Android Framework学习(八)之Handler消息机制(Native层)解析

xiaoxiao2021-02-27  212

在深入解析Android中Handler消息机制一文中,我们学习了Handler消息机制的java层代码,这次我们来学习Handler消息机制的native层代码。

在Java层的消息处理机制中,MessageQueue类里面涉及到多个native方法,除了MessageQueue的native方法,native层本身也有一套完整的消息机制,用于处理native的消息。在整个消息机制中,而MessageQueue是连接Java层和Native层的纽带,换言之,Java层可以向MessageQueue消息队列中添加消息,Native层也可以向MessageQueue消息队列中添加消息。

MessageQueue

MessageQueue是在Looper的构造方法里面创建的 MessageQueue中设计的native方法如下:

private native static long nativeInit(); private native static void nativeDestroy(long ptr); private native void nativePollOnce(long ptr, int timeoutMillis); private native static void nativeWake(long ptr); private native static boolean nativeIsPolling(long ptr); private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);

private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }

nativeInit() 1. new MessageQueue() 首先,我们从MessageQueue的构造函数入手,其中调用了nativeInit()方法

MessageQueue(boolean quitAllowed) { mQuitAllowed = quitAllowed; mPtr = nativeInit(); //mPtr记录native消息队列的信息 }

2.android_os_MessageQueue_nativeInit()方法 framework/base/core/jni/android_os_MessageQueue.cpp

static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) { NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue(); //初始化native消息队列 if (!nativeMessageQueue) { jniThrowRuntimeException(env, "Unable to allocate native queue"); return 0; } nativeMessageQueue->incStrong(env); return reinterpret_cast<jlong>(nativeMessageQueue); }

3.new NativeMessageQueue()

NativeMessageQueue::NativeMessageQueue() : mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) { mLooper = Looper::getForThread(); //获取TLS中的Looper对象 if (mLooper == NULL) { mLooper = new Looper(false); //创建native层的Looper Looper::setForThread(mLooper); //保存native层的Looper到TLS中 }

Looper::getForThread(),功能类比于Java层的Looper.myLooper(); Looper::setForThread(mLooper),功能类比于Java层的ThreadLocal.set();

MessageQueue是在Java层与Native层有着紧密的联系,但是在上面的代码中似乎Native层的Looper与Java层的Looper没有任何的关系,可以发现native基本等价于用C++重写了Java的Looper逻辑,故可以发现很多功能类似的地方。

4.new Looper() system/core/libutils/Looper.cpp

Looper::Looper(bool allowNonCallbacks) : mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false), mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false), mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) { mWakeEventFd = eventfd(0, EFD_NONBLOCK); //构造唤醒事件的fd AutoMutex _l(mLock); rebuildEpollLocked(); //重建Epoll事件 }

5.epoll_create/epoll_ctl

void Looper::rebuildEpollLocked() { if (mEpollFd >= 0) { close(mEpollFd); //关闭旧的epoll实例 } mEpollFd = epoll_create(EPOLL_SIZE_HINT); //创建新的epoll实例,并注册wake管道 struct epoll_event eventItem; memset(& eventItem, 0, sizeof(epoll_event)); //把未使用的数据区域进行置0操作 eventItem.events = EPOLLIN; //可读事件 eventItem.data.fd = mWakeEventFd; //将唤醒事件(mWakeEventFd)添加到epoll实例(mEpollFd) int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem); for (size_t i = 0; i < mRequests.size(); i++) { const Request& request = mRequests.valueAt(i); struct epoll_event eventItem; request.initEventItem(&eventItem); //将request队列的事件,分别添加到epoll实例 int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem); if (epollResult < 0) { ALOGE("Error adding epoll events for fd %d while rebuilding epoll set, errno=%d", request.fd, errno); } } }

关于epoll,此处不展开说明。 此处注意Request队列,也添加到epoll的监控范围内。

Looper.cpp.该类中提供了pollOnce 和wake的休眠和唤醒机制。同时在构造函数中也创建 管道 并加入epoll的机制中,来监听其状态变化。

总结一下,初始化的流程图:

nativeDestroy() 查看了MessageQueue在native层的初始化后,我们来看一下MessageQueue在native层的销毁流程。 MessageQueue.java

private void dispose() { if (mPtr != 0) { nativeDestroy(mPtr); mPtr = 0; } }

2.android_os_MessageQueue_nativeDestroy() android_os_MessageQueue.cpp

static void android_os_MessageQueue_nativeDestroy(JNIEnv* env, jclass clazz, jlong ptr) { NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr); nativeMessageQueue->decStrong(env); }

nativeMessageQueue继承自RefBase类,所以decStrong最终调用的是RefBase.decStrong().

3.RefBase::decStrong() system/core/libutils/RefBase.cpp

void RefBase::decStrong(const void* id) const { weakref_impl* const refs = mRefs; refs->removeStrongRef(id); //移除强引用 const int32_t c = android_atomic_dec(&refs->mStrong); if (c == 1) { refs->mBase->onLastStrongRef(id); if ((refs->mFlags&OBJECT_LIFETIME_MASK) == OBJECT_LIFETIME_STRONG) { delete this; } } refs->decWeak(id); // 移除弱引用 }

关于RefBase的更多知识,请看Android Framework学习(六)之RefBase,SP,WP

归纳一下销毁的流程图

nativePollOnce() nativePollOnce用于提取消息队列中的消息 1.MessageQueue.next() MessageQueue.java Looper中的loop()方法会调用MessageQueue的next()方法,不断从MessageQueue中获取Message 然后分发给对应的Handler处理

Message next() { final long ptr = mPtr; if (ptr == 0) { return null; } for (;;) { ... nativePollOnce(ptr, nextPollTimeoutMillis); //阻塞操作 ... }

2.android_os_MessageQueue_nativePollOnce() android_os_MessageQueue.cpp

static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj, jlong ptr, jint timeoutMillis) { //将Java层传递下来的mPtr转换为nativeMessageQueue NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr); nativeMessageQueue->pollOnce(env, obj, timeoutMillis); }

3.NativeMessageQueue::pollOnce() android_os_MessageQueue.cpp

void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) { mPollEnv = env; mPollObj = pollObj; mLooper->pollOnce(timeoutMillis); mPollObj = NULL; mPollEnv = NULL; if (mExceptionObj) { env->Throw(mExceptionObj); env->DeleteLocalRef(mExceptionObj); mExceptionObj = NULL; } }

4.Looper::pollOnce() framework/native/include/android/Looper.h

inline int pollOnce(int timeoutMillis) { return pollOnce(timeoutMillis, NULL, NULL, NULL); }

5.Looper::pollOnce() framework/base/native/android/looper.cpp

int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) { int result = 0; for (;;) { // 先处理没有Callback方法的 Response事件 while (mResponseIndex < mResponses.size()) { const Response& response = mResponses.itemAt(mResponseIndex++); int ident = response.request.ident; if (ident >= 0) { //ident大于0,则表示没有callback, 因为POLL_CALLBACK = -2, int fd = response.request.fd; int events = response.events; void* data = response.request.data; if (outFd != NULL) *outFd = fd; if (outEvents != NULL) *outEvents = events; if (outData != NULL) *outData = data; return ident; } } if (result != 0) { if (outFd != NULL) *outFd = 0; if (outEvents != NULL) *outEvents = 0; if (outData != NULL) *outData = NULL; return result; } // 再处理内部轮询 result = pollInner(timeoutMillis); } }

参数说明:

timeoutMillis:超时时长 outFd:发生事件的文件描述符 outEvents:当前outFd上发生的事件,包含以下4类事件 EVENT_INPUT 可读 EVENT_OUTPUT 可写 EVENT_ERROR 错误 EVENT_HANGUP 中断 outData:上下文数据

6.Looper::pollInner() Looper.cpp

int Looper::pollInner(int timeoutMillis) { ... int result = POLL_WAKE; mResponses.clear(); mResponseIndex = 0; mPolling = true; //即将处于idle状态 struct epoll_event eventItems[EPOLL_MAX_EVENTS]; //fd最大个数为16 //等待事件发生或者超时,在nativeWake()方法,向管道写端写入字符,则该方法会返回; int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis); mPolling = false; //不再处于idle状态 mLock.lock(); //请求锁 if (mEpollRebuildRequired) { mEpollRebuildRequired = false; rebuildEpollLocked(); // epoll重建,直接跳转Done; goto Done; } if (eventCount < 0) { if (errno == EINTR) { goto Done; } result = POLL_ERROR; // epoll事件个数小于0,发生错误,直接跳转Done; goto Done; } if (eventCount == 0) { //epoll事件个数等于0,发生超时,直接跳转Done; result = POLL_TIMEOUT; goto Done; } //循环遍历,处理所有的事件 for (int i = 0; i < eventCount; i++) { int fd = eventItems[i].data.fd; uint32_t epollEvents = eventItems[i].events; if (fd == mWakeEventFd) { if (epollEvents & EPOLLIN) { awoken(); //已经唤醒了,则读取并清空管道数据 } } else { ssize_t requestIndex = mRequests.indexOfKey(fd); if (requestIndex >= 0) { int events = 0; if (epollEvents & EPOLLIN) events |= EVENT_INPUT; if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT; if (epollEvents & EPOLLERR) events |= EVENT_ERROR; if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP; //处理request,生成对应的reponse对象,push到响应数组 pushResponse(events, mRequests.valueAt(requestIndex)); } } } Done: ; //再处理Native的Message,调用相应回调方法 mNextMessageUptime = LLONG_MAX; while (mMessageEnvelopes.size() != 0) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0); if (messageEnvelope.uptime <= now) { { sp<MessageHandler> handler = messageEnvelope.handler; Message message = messageEnvelope.message; mMessageEnvelopes.removeAt(0); mSendingMessage = true; mLock.unlock(); //释放锁 handler->handleMessage(message); // 处理消息事件 } mLock.lock(); //请求锁 mSendingMessage = false; result = POLL_CALLBACK; // 发生回调 } else { mNextMessageUptime = messageEnvelope.uptime; break; } } mLock.unlock(); //释放锁 //处理带有Callback()方法的Response事件,执行Reponse相应的回调方法 for (size_t i = 0; i < mResponses.size(); i++) { Response& response = mResponses.editItemAt(i); if (response.request.ident == POLL_CALLBACK) { int fd = response.request.fd; int events = response.events; void* data = response.request.data; // 处理请求的回调方法 int callbackResult = response.request.callback->handleEvent(fd, events, data); if (callbackResult == 0) { removeFd(fd, response.request.seq); //移除fd } response.request.callback.clear(); //清除reponse引用的回调方法 result = POLL_CALLBACK; // 发生回调 } } return result; }

7.Looper::awoken()

void Looper::awoken() { uint64_t counter; //不断读取管道数据,目的就是为了清空管道内容 TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t))); }

poll总结

pollInner()方法的处理流程:

先调用epoll_wait(),这是阻塞方法,用于等待事件发生或者超时,epoll_wait()主要在监听管道的read端是否有事件到来; 对于epoll_wait()返回,当且仅当以下3种情况出现: POLL_ERROR,发生错误,直接跳转到Done; POLL_TIMEOUT,发生超时,直接跳转到Done; 检测到管道有事件发生,则再根据情况做相应处理: 如果是管道读端产生事件,则直接读取管道的数据; 如果是其他事件,则处理request,生成对应的reponse对象,push到reponse数组; 进入Done标记位的代码段: 先处理Native的Message,调用Native 的Handler来处理该Message; 再处理Response数组,POLL_CALLBACK类型的事件; 从上面的流程,可以发现对于Request先收集,一并放入reponse数组,而不是马上执行。真正在Done开始执行的时候,是先处理native Message,再处理Request,说明native Message的优先级高于Request请求的优先级。

另外pollOnce()方法中,先处理Response数组中不带Callback的事件,再调用了pollInner()方法。

nativeWake() nativeWake用于唤醒功能,什么时候应该唤醒和怎么唤醒呢?在添加消息到消息队列enqueueMessage(), 或者把消息从消息队列中全部移除quit(),再有需要时都会调用 nativeWake方法。

1.MessageQueue.enqueueMessage()

boolean enqueueMessage(Message msg, long when) { ... //将Message按时间顺序插入MessageQueue if (needWake) { nativeWake(mPtr); } }

往消息队列添加Message时,需要根据mBlocked情况来决定是否需要调用nativeWake。我们可以看到mBlocked的赋值情况:

boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; }

2.android_os_MessageQueue_nativeWake() android_os_MessageQueue.cpp

static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) { NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr); nativeMessageQueue->wake(); }

3.NativeMessageQueue::wake() android_os_MessageQueue.cpp

void NativeMessageQueue::wake() { mLooper->wake(); }

4.Looper::wake() Looper.cpp

void Looper::wake() { uint64_t inc = 1; // 向管道mWakeEventFd写入字符1 ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t))); if (nWrite != sizeof(uint64_t)) { if (errno != EAGAIN) { ALOGW("Could not write wake signal, errno=%d", errno); } } }

其中TEMP_FAILURE_RETRY 是一个宏定义, 当执行write失败后,会不断重复执行,直到执行成功为止,write的时候就会触发epoll的mWakeReadPipFdd唤醒进程,进而从MessageQueue的next方法,获取下一个msg。

sendMessage 接下来讲讲Native层如何向MessageQueue发送消息 1.sendMessage

void Looper::sendMessage(const sp<MessageHandler>& handler, const Message& message) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); sendMessageAtTime(now, handler, message); }

2.sendMessageDelayed

void Looper::sendMessageDelayed(nsecs_t uptimeDelay, const sp<MessageHandler>& handler, const Message& message) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); sendMessageAtTime(now + uptimeDelay, handler, message); }

sendMessage(),sendMessageDelayed() 都是调用sendMessageAtTime()来完成消息插入。 3.sendMessageAtTime

void Looper::sendMessageAtTime(nsecs_t uptime, const sp<MessageHandler>& handler, const Message& message) { size_t i = 0; { //请求锁 AutoMutex _l(mLock); size_t messageCount = mMessageEnvelopes.size(); //找到message应该插入的位置i while (i < messageCount && uptime >= mMessageEnvelopes.itemAt(i).uptime) { i += 1; } MessageEnvelope messageEnvelope(uptime, handler, message); mMessageEnvelopes.insertAt(messageEnvelope, i, 1); //如果当前正在发送消息,那么不再调用wake(),直接返回。 if (mSendingMessage) { return; } } //释放锁 //当把消息加入到消息队列的头部时,需要唤醒poll循环。 if (i == 0) { wake(); } }

MessageQueue的native()方法,经过层层调用:

nativeInit()方法,最终实现由epoll机制中的epoll_create()/epoll_ctl()完成; nativeDestroy()方法,最终实现由RefBase::decStrong()完成; nativePollOnce()方法,最终实现由Looper::pollOnce()完成; nativeWake()方法,最终实现由Looper::wake()调用write方法,向管道写入字符; nativeIsPolling(),nativeSetFileDescriptorEvents()这两个方法类似,此处就不一一列举。

Native结构体和类

Looper.h/ Looper.cpp文件中,定义了Message结构体,消息处理类,回调类,Looper类。

Message结构体

struct Message { Message() : what(0) { } Message(int what) : what(what) { } int what; // 消息类型 };

消息处理类

class MessageHandler : public virtual RefBase { protected: virtual ~MessageHandler() { } public: virtual void handleMessage(const Message& message) = 0; };

WeakMessageHandler类,继承于MessageHandler类

class WeakMessageHandler : public MessageHandler { protected: virtual ~WeakMessageHandler(); public: WeakMessageHandler(const wp<MessageHandler>& handler); virtual void handleMessage(const Message& message); private: wp<MessageHandler> mHandler; }; void WeakMessageHandler::handleMessage(const Message& message) { sp<MessageHandler> handler = mHandler.promote(); if (handler != NULL) { handler->handleMessage(message); //调用MessageHandler类的处理方法() } }

回调类

LooperCallback类

class LooperCallback : public virtual RefBase { protected: virtual ~LooperCallback() { } public: //用于处理指定的文件描述符的poll事件 virtual int handleEvent(int fd, int events, void* data) = 0; };

SimpleLooperCallback类, 继承于LooperCallback类

class SimpleLooperCallback : public LooperCallback { protected: virtual ~SimpleLooperCallback(); public: SimpleLooperCallback(Looper_callbackFunc callback); virtual int handleEvent(int fd, int events, void* data); private: Looper_callbackFunc mCallback; }; int SimpleLooperCallback::handleEvent(int fd, int events, void* data) { return mCallback(fd, events, data); //调用回调方法 }

Looper类

static const int EPOLL_SIZE_HINT = 8; //每个epoll实例默认的文件描述符个数 static const int EPOLL_MAX_EVENTS = 16; //轮询事件的文件描述符的个数上限

其中Looper类的内部定义了Request,Response,MessageEnvelope这3个结构体,关系图如下:

struct Request { //请求结构体 int fd; int ident; int events; int seq; sp<LooperCallback> callback; void* data; void initEventItem(struct epoll_event* eventItem) const; }; struct Response { //响应结构体 int events; Request request; }; struct MessageEnvelope { //信封结构体 MessageEnvelope() : uptime(0) { } MessageEnvelope(nsecs_t uptime, const sp<MessageHandler> handler, const Message& message) : uptime(uptime), handler(handler), message(message) { } nsecs_t uptime; sp<MessageHandler> handler; Message message; };

MessageEnvelope正如其名字,信封。MessageEnvelope里面记录着收信人(handler),发信时间(uptime),信件内容(message)

ALooper类

ALooper类定义在通过looper.cpp/looper.h(注意此文件是小写字母开头,与Looper.cpp不同)

static inline Looper* ALooper_to_Looper(ALooper* alooper) { return reinterpret_cast<Looper*>(alooper); } static inline ALooper* Looper_to_ALooper(Looper* looper) { return reinterpret_cast<ALooper*>(looper); }

ALooper类 与前面介绍的Looper类,更多的操作是通过ALooper_to_Looper(), Looper_to_ALooper()这两个方法转换完成的,也就是说ALooper类中定义的所有方法,都是通过转换为Looper类,再执行Looper中的方法。

红色虚线关系:Java层和Native层的MessageQueue通过JNI建立关联,彼此之间能相互调用,搞明白这个互调关系,也就搞明白了Java如何调用C++代码,C++代码又是如何调用Java代码。 蓝色虚线关系:Handler/Looper/Message这三大类Java层与Native层并没有任何的真正关联,只是分别在Java层和Native层的handler消息模型中具有相似的功能。都是彼此独立的,各自实现相应的逻辑。 WeakMessageHandler继承于MessageHandler类,NativeMessageQueue继承于MessageQueue类

另外,消息处理流程是先处理Native Message,再处理Native Request,最后处理Java Message。理解了该流程,也就明白有时上层消息很少,但响应时间却较长的真正原因。

转载请注明原文地址: https://www.6miu.com/read-9826.html

最新回复(0)