一、特征值分解 1、 矩阵乘法
在介绍特征值与特征向量的几何意义之前,先介绍矩阵乘法的几何意义。
矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度的新向量。在这个变化过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某些向量只发生伸缩变换,不产生旋转效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。
比如:,它对应的线性变换是下面的形式形式:
由于矩阵M是对称的,所以这个变换是一个对 x , y 轴的一个拉伸变换。【当M中元素值大于1时,是拉伸;当值小于1时,是缩短】
那么如果矩阵M不是对称的,比如:, 它所描述的变换如下图所示:
这其实是在平面上对一个轴进行的拉伸变换【如蓝色箭头所示】,在图中蓝色箭头是一个最主要的变化方向。变化方向可能有不止一个,但如果我们想要描述好一个变换,那我们就描述好这个变换主要的变化方向就好了。
2、特征值分解与特征向量
如果说一个向量P是方阵A的特征向量,将一定可以表示成AP = λP,λ为特征向量 P对应的特征值。 特征值分解是将一个矩阵分解为
其中,Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角矩阵,每一个对角线元素就是一个特征值,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。也就是说矩阵A的信息可以由其特征值和特征向量表示。
对于矩阵为高维的情况下,那么这个矩阵就是高维空间下的一个线性变换。可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前N个特征向量,那么就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换)。
总结一下,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么。不过,特征值分解也有很多的局限,比如说变换的矩阵必须是方阵。
在机器学习特征提取中,意思就是最大特征值对应的特征向量方向上包含最多的信息量,如果某几个特征值很小,说明这几个方向信息量很小,可以用来降维,也就是删除小特征值对应方向的数据,只保留大特征值方向对应的数据,这样做以后数据量减小,但有用信息量变化不大,PCA降维就是基于这种思路。
matlab中通过eig函数就可求得特征值和特征向量矩阵. 如:
>>A = 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 >> [V D] = eig(A) V = -0.4472 0.0976 -0.6330 0.6780 -0.2619 -0.4472 0.3525 0.5895 0.3223 -0.1732 -0.4472 0.5501 -0.3915 -0.5501 0.3915 -0.4472 -0.3223 0.1732 -0.3525 -0.5895 -0.4472 -0.6780 0.2619 -0.0976 0.6330 D = 65.0000 0 0 0 0 0 -21.2768 0 0 0 0 0 -13.1263 0 0 0 0 0 21.2768 0 0 0 0 0 13.1263D对角线的元素即为特征值(表示了伸缩的比例),D就是特征值分解公式中的Σ,V的每一列与D的每列对应,表示对应的特征向量,即特征值分解中的Q。
二、奇异值分解
1、奇异值
特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有N个学生,每个学生有M科成绩,这样形成的一个N * M的矩阵就不可能是方阵,我们怎样才能描述这样普通的矩阵呢的重要特征呢?奇异值分解可以用来干这个事情,奇异值分解是一个能适用于任意的矩阵的一种分解的方法: 分解形式: 假设A是一个M * N的矩阵,那么得到的U是一个M * M的方阵(称为左奇异向量),Σ是一个M * N的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值),VT(V的转置)是一个N * N的矩阵(称为右奇异向量)。
2、 奇异值与特征值
那么奇异值和特征值是怎么对应起来的呢?我们将一个矩阵A的转置乘以 A,并对(ATA)求特征值,则有下面的形式:
这里的σ就是奇异值,u就是上面说的左奇异向量。
奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r( r远小于m、n )个的奇异值来近似描述矩阵,即部分奇异值分解:
右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,r越接近于n,则相乘的结果越接近于A。
奇异值分解相对于特征值分解的优势: ① 分解的矩阵可以是任意矩阵 ② 在恢复信号的时候左右奇异值可以选择不同的维度 另外值得注意的一点:不论是奇异值分解还是特征值分解,分解出来的特征向量都是正交的。
关于奇异值与PCA的关系, 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用给了很好的解释。