动态规划

xiaoxiao2021-02-28  85

The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 49826 Accepted: 30089 Description 7 3   8 8   1   0 2   7   4   4 4   5   2   6   5 (Figure 1) Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right. Input Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.  Output Your program is to write to standard output. The highest sum is written as an integer. Sample Input 5 7 3 8 8 1 0  2 7 4 4 4 5 2 6 5 Sample Output 30 Source

IOI 1994

#include <bits/stdc++.h> #include<algorithm> using namespace std; #define MAX 101 int D[MAX][MAX]; int n; int maxSum[MAX][MAX]; int MaxSum(int i,int j){ if(maxSum[i][j]!=-1) return maxSum[i][j]; if(i==n) maxSum[i][j]=D[i][j]; else { int x=MaxSum(i+1,j); int y=MaxSum(i+1,j+1); maxSum[i][j]=max(x,y)+D[i][j]; } return maxSum[i][j]; } int main(){ int i,j; cin>>n; for(i=1;i<=n;i++) for(j=1;j<=i;j++){ cin>>D[i][j]; maxSum[i][j]=-1; } cout<<MaxSum(1,1)<<endl; }

转载请注明原文地址: https://www.6miu.com/read-85436.html

最新回复(0)