2017女生赛 1002 Building Shops【dp】

xiaoxiao2021-02-28  111

Building Shops

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 26    Accepted Submission(s): 16 Problem Description HDU’s  n  classrooms are on a line ,which can be considered as a number line. Each classroom has a coordinate. Now Little Q wants to build several candy shops in these  n  classrooms. The total cost consists of two parts. Building a candy shop at classroom  i  would have some cost  ci . For every classroom  P  without any candy shop, then the distance between  P  and the rightmost classroom with a candy shop on  P 's left side would be included in the cost too. Obviously, if there is a classroom without any candy shop, there must be a candy shop on its left side. Now Little Q wants to know how to build the candy shops with the minimal cost. Please write a program to help him.   Input The input contains several test cases, no more than 10 test cases. In each test case, the first line contains an integer  n(1n3000) , denoting the number of the classrooms. In the following  n  lines, each line contains two integers  xi,ci(109xi,ci109) , denoting the coordinate of the  i -th classroom and the cost of building a candy shop in it. There are no two classrooms having same coordinate.   Output For each test case, print a single line containing an integer, denoting the minimal cost.   Sample Input 3 1 2 2 3 3 4 4 1 7 3 1 5 10 6 1   Sample Output 5 11         dp[i]表示建到i(且i建商店)的代价;

#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<string> #include<queue> #include<stack> #include<vector> #include<algorithm> using namespace std; #define ll long long #define ms(a,b) memset(a,b,sizeof(a)) const int M=1e4+10; const int inf=0x3f3f3f3f; int i,j,k,n,m; ll dp[M]; struct node { ll x,c; }p[M]; bool cmp(node a,node b) { return a.x<b.x; } ll len[M]; int main() { int T; while(~scanf("%d",&n)){ for(int i=1;i<=n;i++) scanf("%lld%lld",&p[i].x,&p[i].c); sort(p+1,p+n+1,cmp); len[0]=0; for(int i=1;i<=n;i++) len[i]=len[i-1]+p[i].x-p[1].x; ms(dp,inf); dp[1]=p[1].c; for(int i=2;i<=n;i++){ for(int j=1;j<i;j++){ if(j==i-1)dp[i]=min(dp[i],dp[j]+p[i].c); else dp[i]=min(dp[i],dp[j]+p[i].c+len[i-1]-len[j]-(i-1-j)*(p[j].x-p[1].x)); } } ll ans=inf; for(int i=1;i<=n;i++){ if(i==n)ans=min(ans,dp[n]); else ans=min(ans,dp[i]+len[n]-len[i]-(n-i)*(p[i].x-p[1].x)); } printf("%lld\n",ans); } return 0; }

转载请注明原文地址: https://www.6miu.com/read-82357.html

最新回复(0)