HDU6026-Deleting Edges

xiaoxiao2021-02-28  82

Deleting Edges

                                                                                Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)                                                                                                                   Total Submission(s): 0    Accepted Submission(s): 0 Problem Description Little Q is crazy about graph theory, and now he creates a game about graphs and trees. There is a bi-directional graph with  n  nodes, labeled from 0 to  n1 . Every edge has its length, which is a positive integer ranged from 1 to 9. Now, Little Q wants to delete some edges (or delete nothing) in the graph to get a new graph, which satisfies the following requirements: (1) The new graph is a tree with  n1  edges. (2) For every vertice  v(0<v<n) , the distance between 0 and  v  on the tree is equal to the length of shortest path from 0 to  v  in the original graph. Little Q wonders the number of ways to delete edges to get such a satisfied graph. If there exists an edge between two nodes  i  and  j , while in another graph there isn't such edge, then we regard the two graphs different. Since the answer may be very large, please print the answer modulo  109+7 .   Input The input contains several test cases, no more than 10 test cases. In each test case, the first line contains an integer  n(1n50) , denoting the number of nodes in the graph. In the following  n  lines, every line contains a string with  n  characters. These strings describes the adjacency matrix of the graph. Suppose the  j -th number of the  i -th line is  c(0c9) , if  c  is a positive integer, there is an edge between  i  and  j  with length of  c , if  c=0 , then there isn't any edge between  i  and  j . The input data ensure that the  i -th number of the  i -th line is always 0, and the  j -th number of the  i -th line is always equal to the  i -th number of the  j -th line.   Output For each test case, print a single line containing a single integer, denoting the answer modulo  109+7 .   Sample Input 2 01 10 4 0123 1012 2101 3210   Sample Output 1 6  

题意:有n个点,告诉你两两之间的边,让你去掉一些边,使得0号节点到其他节点都是最短路,问有多少种这样的图

解题思路:最短路,先建一个只包含最短路的有向无环图,每一个点选择任意一条入边即可生成一个树形图,那么树的种类就等于每个点的入度乘积

#include <iostream> #include <cstdio> #include <cstring> #include <string> #include <algorithm> #include <cmath> #include <map> #include <cmath> #include <set> #include <stack> #include <queue> #include <vector> #include <bitset> #include <functional> using namespace std; #define LL long long const int INF=0x3f3f3f3f; #define mod 1000000007 int n,s[60],nt[5009],e[5009],l[5009],visit[60],dis[60]; LL a[60]; char ch[60][60]; struct node { int id,l; friend bool operator <(node a,node b) { return a.l>b.l; } }; void Dijkstra() { memset(visit,0,sizeof visit); memset(dis,INF,sizeof dis); priority_queue<node>q; node pre,nt1; pre.id=0,pre.l=0,a[0]=1; dis[0]=0; q.push(pre); while(!q.empty()) { pre=q.top(); q.pop(); visit[pre.id]=1; for(int i=s[pre.id];~i;i=nt[i]) { int ee=e[i]; if(visit[ee]) continue; if(dis[ee]>pre.l+l[i]) { a[ee]=1; dis[ee]=pre.l+l[i]; nt1.id=ee; nt1.l=dis[ee]; q.push(nt1); } else if(dis[ee]==pre.l+l[i]) a[ee]++; } } LL ans=1; for(int i=0;i<n;i++) { ans*=a[i]; ans%=mod; } printf("%lld\n",ans); } int main() { while(~scanf("%d",&n)) { int cnt=0; memset(s,-1,sizeof s); for(int i=0;i<n;i++) { scanf("%s",ch[i]); for(int j=0;j<n;j++) { if(ch[i][j]!='0') nt[cnt]=s[i],s[i]=cnt,e[cnt]=j,l[cnt++]=ch[i][j]-'0'; } } Dijkstra(); } return 0; }

转载请注明原文地址: https://www.6miu.com/read-81634.html

最新回复(0)