题目:
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
题目链接题意:
给一个二叉搜索树,找到给定两个节点的最低的公共祖先节点。
这题首先应考虑二叉搜索树的性质,对于每一个节点,左子节点小于父节点,右子节点大于父节点,所以最低的公共祖先节点一定符合p和q分布在其左支和右支上的性质,通过判断p,q的val与root的val大小,判断p,q在root的哪边分支上,然后递归或循环,直到root满足左右分支分别有一个p或q为止。
代码如下:
class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { while ((root->val - p->val) * (root->val - q->val) > 0) { if (root->val < p->val && root->val < q->val) root = root->right; else if (root->val > p->val && root->val > q->val) root = root->left; } return root; } };