HDU6029-Graph Theory

xiaoxiao2021-02-28  89

Graph Theory

                                                                           Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)                                                                                                              Total Submission(s): 0    Accepted Submission(s): 0 Problem Description Little Q loves playing with different kinds of graphs very much. One day he thought about an interesting category of graphs called ``Cool Graph'', which are generated in the following way: Let the set of vertices be {1, 2, 3, ...,  n }. You have to consider every vertice from left to right (i.e. from vertice 2 to  n ). At vertice  i , you must make one of the following two decisions: (1) Add edges between this vertex and all the previous vertices (i.e. from vertex 1 to  i1 ). (2) Not add any edge between this vertex and any of the previous vertices. In the mathematical discipline of graph theory, a matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set. Now Little Q is interested in checking whether a ''Cool Graph'' has perfect matching. Please write a program to help him.   Input The first line of the input contains an integer  T(1T50) , denoting the number of test cases. In each test case, there is an integer  n(2n100000)  in the first line, denoting the number of vertices of the graph. The following line contains  n1  integers  a2,a3,...,an(1ai2) , denoting the decision on each vertice.   Output For each test case, output a string in the first line. If the graph has perfect matching, output ''Yes'', otherwise output ''No''.   Sample Input 3 2 1 2 2 4 1 1 2   Sample Output Yes No No  

题意:有n个点,每个点有两种连边方式,1表示和前面所有的点连边,2表示和前面所有的点不连边,问能不能构成完美匹配

解题思路:若n为奇数,那么必然不能构成完美匹配,n为偶数时,从后向前判,看方式1的个数是否一直大于方式2

#include <iostream> #include <cstdio> #include <cstring> #include <string> #include <algorithm> #include <cmath> #include <map> #include <cmath> #include <set> #include <stack> #include <queue> #include <vector> #include <bitset> #include <functional> using namespace std; #define LL long long const int INF=0x3f3f3f3f; int a[100005]; int main() { int t,n; scanf("%d",&t); while(t--) { scanf("%d",&n); for(int i=1; i<n; i++) scanf("%d",&a[i]); if(n%2) { printf("No\n"); continue; } int cnt=0; int flag=0; for(int i=n-1; i>=1; i--) { if(a[i]==1) cnt++; else { if(cnt==0) { flag=1; break; } cnt--; } } if(flag) printf("No\n"); else printf("Yes\n"); } return 0; }

转载请注明原文地址: https://www.6miu.com/read-81391.html

最新回复(0)