library(arules)
library(arulesViz)
library(RColorBrewer)
groceries <-
read.transactions(
"groceries.csv",
format=
"basket", sep=
",")
summary(groceries)
class(groceries)
groceries
dim(groceries)
colnames(groceries)[
1:
5]
rownames(groceries)[
1:
5]
basketSize<-size(groceries)
summary(basketSize)
sum(basketSize)
itemFreq <- itemFrequency(groceries)
sum(itemFreq)
itemCount <- (itemFreq/
sum(itemFreq))*
sum(basketSize)
summary(itemCount)
orderedItem <-
sort(itemCount, decreasing = )
orderedItem[
1:
10]
orderedItemFreq <-
sort(itemFrequency(groceries), decreasing=)
orderedItemFreq[
1:
10]
itemFrequencyPlot(groceries, support=
0.1)
itemFrequencyPlot(groceries, topN=
10, horiz=T)
inspect(groceries[
1:
5])
image(groceries[
1:
10])
image(sample(groceries,
100))
groceryrules <- apriori(groceries, parameter = list(support =
0.006, confidence =
0.25, minlen =
2))
inspect(groceryrules[
1:
10])
ordered_groceryrules <-
sort(groceryrules,
by=
"lift")
inspect(ordered_groceryrules[
1:
5])
yogurtrules <- subset(groceryrules,
items %
in% c(
"yogurt"))
inspect(yogurtrules)
qualityMeasures<-interestMeasure(groceryrules,c(“coverage”,”fishersExactTest”,”conviction”, “chiSquared”), transactions=groceries)
summary(qualityMeasures)
write(groceryrules,
file=”groceryrules.csv”, sep=”,”,
quote=
TRUE, row.names=
FALSE)
转化data.frame分析:
groceryrules_df <-
as(groceryrules, “data.frame”)?
str(groceryrules_df)
plot(groceryrules, method=”scatterplot”,control=list(jitter=
2, col = rev(brewer.pal(
9, “Greens”))), shading = “lift”)
plot(groceryrules, control=list(jitter=
2, col = rev(brewer.pal(
9, “Greens”))), shading = “lift”,method = ‘grouped’)