摘要:Ubuntu17.04安装TensorFlow1.2的GPU版本。首先验证nvidia显卡,然后安装CUDA Toolkit 8.0,安装cuDNN v5深度神经网络计算加速库,最后通过python pip安装TensorFlow-GPU版本。
【CUDA官方下载】https://developer.nvidia.com/cuda-downloads
xiaolei@wang:~/Downloads$ sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb xiaolei@wang:~/Downloads$ sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-cublas-performance-update_8.0.61-1_amd64.deb xiaolei@wang:~/Downloads$ sudo apt update xiaolei@wang:~/Downloads$ sudo apt install cudaNVIDIA cuDNN是用于深度神经网络的GPU加速库。
【原文】The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers. cuDNN is part of the NVIDIA Deep Learning SDK.
【官方下载】(需要注册登录后填写个小问卷才能下载)https://developer.nvidia.com/cudnn
tensorflow-gpu r1.2现在(201707)默认的是cuDNN v5,而v6会报错。安装方式很简单,下载后解压,把cudnn中的文件内容拷贝到对应的cuda中。 xiaolei@wang:~/Downloads$ tar -zxf cudnn-8.0-linux-x64-v5.1.tgz && cd cuda xiaolei@wang:~/Downloads/cuda$ sudo cp include/cudnn.h /usr/local/cuda-8.0/include/ xiaolei@wang:~/Downloads/cuda/lib64$ sudo cp lib64/libcudnn* /usr/local/cuda-8.0/lib64可以通过python2或者python3的安装,博主使用的是python3。
可以看到已经使用GPU了!完结-成功
https://www.tensorflow.org/install/install_sources#common_installation_problems