K-means算法

xiaoxiao2021-02-28  84

K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。假设要把样本集分为c个类别,算法描述如下:

(1)适当选择c个类的初始中心;

(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;

(3)利用均值等方法更新该类的中心值;

(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。 该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。

k-means算法的基础是最小误差平方和准则。其代价函数是:

 式中,μc(i)表示第i个聚类的均值。我们希望代价函数最小,直观的来说,各类内的样本越相似,其与该类均值间的误差平方越小,对所有类所得到的误差平方求和,即可验证分为k类时,各聚类是否是最优的。

具体python代码实现参考:http://www.cnblogs.com/MrLJC/p/4127553.html

二分K-means代码实现:http://www.cnblogs.com/MrLJC/p/4129700.html

转载请注明原文地址: https://www.6miu.com/read-76075.html

最新回复(0)