转载自:http://blog.csdn.net/qq_21057881/article/details/52128980
Description
Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j<=n),which is 0 or 1. Besides,X ij meets the following conditions: 1.X 12+X 13+...X 1n=1 2.X 1n+X 2n+...X n-1n=1 3.for each i (1<i<n), satisfies ∑X ki (1<=k<=n)=∑X ij (1<=j<=n). For example, if n=4,we can get the following equality: X 12+X 13+X 14=1 X 14+X 24+X 34=1 X 12+X 22+X 32+X 42=X 21+X 22+X 23+X 24 X 13+X 23+X 33+X 43=X 31+X 32+X 33+X 34 Now ,we want to know the minimum of ∑C ij*X ij(1<=i,j<=n) you can get. Hint For sample, X 12=X 24=1,all other X ij is 0.Input
The input consists of multiple test cases (less than 35 case). For each test case ,the first line contains one integer n (1<n<=300). The next n lines, for each lines, each of which contains n integers, illustrating the matrix C, The j-th integer on i-th line is C ij(0<=C ij<=100000).Output
For each case, output the minimum of ∑C ij*X ij you can get.Sample Input
4 1 2 4 10 2 0 1 1 2 2 0 5 6 3 1 2Sample Output
3思路:一个很裸的0/1规划的题,没接触过的话很难会朝图论的方面去想,从前两个条件其实就是点1的出度为1,点n的入度为1,然后其他点的出度等于入度,边权就是它的费用,那么建图然后最短路就可以了,这里比较坑的是由于只说了出度为1,但入度不知道,所以可能存在两个环,从1出发回到1,从n出发回到n的情况
#include <iostream> #include<cstdio> #include<queue> #include<cstring> #include<algorithm> using namespace std; #define inf 1e9 const int maxn = 400; int n,mp[maxn][maxn]; int d[maxn],inq[maxn]; int spfa(int s,int t,int &res) { queue<int>q; for(int i = 0;i<=n;i++) d[i]=inf; memset(inq,0,sizeof(inq)); d[s]=0; q.push(s); while(!q.empty()) { int u = q.front(); q.pop(); inq[u]=0; for(int i = 0;i<n;i++) { if(s!=u && i==s) res = min(res,mp[u][i]+d[u]); if(d[i]>d[u]+mp[u][i]) { d[i]=d[u]+mp[u][i]; if(!inq[i]) { q.push(i); inq[i]=1; } } } } return d[t]; } int main() { while(scanf("%d",&n)!=EOF) { for(int i = 0;i<n;i++) for(int j = 0;j<n;j++) scanf("%d",&mp[i][j]); int res1 = inf; int ans = spfa(0,n-1,res1); int res2 = inf; spfa(n-1,0,res2); printf("%d\n",min(ans,res1+res2)); } }