简单介绍
在实际的应用中,我们常常需要对图像中的曲线进行描述、处理,这个曲线可以是轮廓,骨架或者其他。可以用deque<Point> 描述曲线,接下来简单介绍下如何从图片中搜索这些曲线并保存。 首先,输入的图片是一张二值图片 (白色为曲线),其中包含的曲线宽度为 1 像素的 (如果曲线不是 1 像素的 先提取其骨架)。遍历寻找图像中第一个白色的点,然后从这个点开始延伸寻找曲线。注意,第一个找到的点不一定是曲线的端点,因此应该分别向两边寻找相邻的点,因此deque 会好一些。每找到一个点,将其保存deque 而后置黑(防止重复寻找)。搜索到一个没有相邻点的点,表示一端搜索完成。 值得注意的一点是,我在写搜寻相邻点的时候,会首先搜寻此点与上一个点相邻位置相对的位置,如果没有,则分别搜索向两边搜索。这样的好处是可以减少寻找的次数,而且当有相交的曲线时,能连接到我们一般认为的曲线。
代码
bool findNextPoint(
vector<Point> &_neighbor_points, Mat &_image, Point _inpoint,
int flag, Point& _outpoint,
int &_outflag)
{
int i = flag;
int count =
1;
bool success =
false;
while (count <=
7)
{
Point tmppoint = _inpoint + _neighbor_points[i];
if (tmppoint.x >
0 && tmppoint.y >
0 && tmppoint.x < _image.cols&&tmppoint.y < _image.rows)
{
if (_image.at<uchar>(tmppoint) ==
255)
{
_outpoint = tmppoint;
_outflag = i;
success =
true;
_image.at<uchar>(tmppoint) =
0;
break;
}
}
if (count %
2)
{
i += count;
if (i >
7)
{
i -=
8;
}
}
else
{
i += -count;
if (i <
0)
{
i +=
8;
}
}
count++;
}
return success;
}
bool findFirstPoint(Mat &_inputimg, Point &_outputpoint)
{
bool success =
false;
for (
int i =
0; i < _inputimg.rows; i++)
{
uchar* data = _inputimg.ptr<uchar>(i);
for (
int j =
0; j < _inputimg.cols; j++)
{
if (data[j] ==
255)
{
success =
true;
_outputpoint.x = j;
_outputpoint.y = i;
data[j] =
0;
break;
}
}
if (success)
break;
}
return success;
}
void findLines(Mat &_inputimg,
vector<deque<Point>> &_outputlines)
{
vector<Point> neighbor_points = { Point(-
1,-
1),Point(
0,-
1),Point(
1,-
1),Point(
1,
0),Point(
1,
1),Point(
0,
1),Point(-
1,
1),Point(-
1,
0) };
Point first_point;
while (findFirstPoint(_inputimg, first_point))
{
deque<Point> line;
line.push_back(first_point);
Point this_point = first_point;
int this_flag =
0;
Point next_point;
int next_flag;
while (findNextPoint(neighbor_points, _inputimg, this_point, this_flag, next_point, next_flag))
{
line.push_back(next_point);
this_point = next_point;
this_flag = next_flag;
}
this_point = first_point;
this_flag =
0;
while (findNextPoint(neighbor_points, _inputimg, this_point, this_flag, next_point, next_flag))
{
line.push_front(next_point);
this_point = next_point;
this_flag = next_flag;
}
if (line.size() >
10)
{
_outputlines.push_back(line);
}
}
}
Scalar random_color(RNG& _rng)
{
int icolor = (
unsigned)_rng;
return Scalar(icolor &
0xFF, (icolor >>
8) &
0xFF, (icolor >>
16) &
0xFF);
}
int main()
{
Mat image = imread(
"images\\2.bmp");
Mat gray;
cvtColor(image, gray, CV_BGR2GRAY);
vector<deque<Point>> lines;
findLines(gray, lines);
cout << lines.size() << endl;
Mat draw_img = image.clone();
RNG rng(
123);
Scalar color;
for (
int i =
0; i < lines.size(); i++)
{
color = random_color(rng);
for (
int j =
0; j < lines[i].size(); j++)
{
draw_img.at<Vec3b>(lines[i][j]) = Vec3b(color[
0], color[
1], color[
2]);
}
}
imshow(
"draw_img", draw_img);
imwrite(
"images\\draw_img.bmp", draw_img);
waitKey(
0);
system(
"pause");
return 0;
}
结果
输入图像
结果