1

xiaoxiao2021-02-27  278

clc clear %The given conditions Wsc=2*pi*80; Wob=Wsc; M=3.2; %The selected PID gains Kpv=M*Wsc; %the proportional gains of the speed controller Kiv=0.2*Kpv*Wsc; %the integral gains of the speed controller Kpp=Wsc/9; %the proportional gain of the position controller KP=Kpp*Kpv+Kiv; %the P gains of PID controller. KI=Kpp*Kiv; %the I gains of PID controller. KD=Kpv; %the D gains of PID controller. %PID gains of the Disturbance Observer LP=3*Wob^2*M; LI=Wob^3*M; LD=3*Wob*M; %disturbance compensation performance P/Fdist DCAL=[M LD LP LI]; DCBL=[M KD KP KI]; numeL=[M LD LP 0 0]; denoL=conv(DCAL,DCBL); Luen=tf(numeL,denoL); bode(Luen); grid on hold on %disturbance compensation performance of using modified observer DCAM=[M LD LP LI]; DCBM=[M KD KP KI]; numeM=[M LD 0 0 0]; denoM=conv(DCAM,DCBM); Modi=tf(numeM,denoM); bode(Modi) %%no disturbance compensation numeN=[1 0]; denoN=[M KD KP KI]; No=tf(numeN,denoN); bode(No); h = findobj(gcf, 'Type','line'); set(h, 'LineWidth', 2);%change linewidth title('bode plot:P/Fdist') legend('Luenberger observer','Modified observer','No compensation')
转载请注明原文地址: https://www.6miu.com/read-7213.html

最新回复(0)