【HDU5412】CRB and Queries-整体二分:带修改区间第K小

xiaoxiao2021-02-28  66

测试地址:CRB and Queries 题目大意:维护一个数列 A ,要求支持两种操作:1.修改一个元素;2.给定K,询问某一个区间的第K小元素。 做法:经典的带修改区间第K小,本人使用树状数组套主席树完成过和这题题意一致的题,题解在这里。后来本人学习了整体二分这一思想,运用这一思想可以更加简便的完成这一道题,接下来我们就来看看整体二分的思想以及如何运用它来解决这一道题。 我们知道要求区间第K小,就是要在询问区间内求一个值,使得在询问区间内小于这个值的数小于K,并且小于等于这个值的数大于等于K,这个性质是单调的,如果只有一个询问,我们可以二分答案 树状数组统计来完成这一任务。那么扩展到多个询问,单纯的二分就不能解决这一问题了,所以我们使用整体二分的思想。 整体二分是通过二分答案的取值区间,同时把操作归到对应的取值区间里。一般整体二分的主体都是一个函数solve(s,t,l,r),表示操作区间 [s,t] 内询问的答案或者要修改的量都在取值区间 [l,r] 内。一般解题的步骤是这样的: 1.确定区间中点 mid=l+r2 ,统计当答案等于 mid 时,操作区间 [s,t] 内询问的信息。 2.将取值区间分割为 [l,mid] [mid+1,r] 两个区间,根据各个询问的信息将询问重新排列,向下递归处理。 显然可见,如果 l=r ,那么操作区间 [s,t] 内的所有询问的答案就是 l 。 把这个思想带到这一题中,那么解题的思路就很显然了,统计的时候使用树状数组就行了,复杂度O(Nlog2N),和树状数组套主席树同阶,显然整体二分代码量小一些,而且思路也比较清晰。到了这一步还不理解的话就看代码吧。 以下是本人代码:

#include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> #define inf 2000000000 using namespace std; int n,cnt,qcnt,Q,a[100010],tmp[100010],ans[100010],bit[100010]={0}; struct query { int id,x,y,val,cur,k; }q[300010],a1[300010],a2[300010]; int lowbit(int i) { return i&(-i); } void add(int x,int d) { for(int i=x;i<=n;i+=lowbit(i)) bit[i]+=d; } int sum(int x) { int s=0; for(int i=x;i;i-=lowbit(i)) s+=bit[i]; return s; } void solve(int s,int t,int l,int r) { if (s>t) return; if (l==r) { for(int i=s;i<=t;i++) if (q[i].val==0) ans[q[i].id]=l; return; } int mid=(l+r)>>1; for(int i=s;i<=t;i++) { if (q[i].val!=0&&q[i].y<=mid) add(q[i].x,q[i].val); if (q[i].val==0) tmp[q[i].id]=sum(q[i].y)-sum(q[i].x-1); } for(int i=s;i<=t;i++) if (q[i].val!=0&&q[i].y<=mid) add(q[i].x,-q[i].val); int n1=0,n2=0; for(int i=s;i<=t;i++) { if (q[i].val==0) { if (q[i].cur+tmp[q[i].id]>=q[i].k) a1[++n1]=q[i]; else { q[i].cur+=tmp[q[i].id]; a2[++n2]=q[i]; } } else { if (q[i].y<=mid) a1[++n1]=q[i]; else a2[++n2]=q[i]; } } for(int i=1;i<=n1;i++) q[s+i-1]=a1[i]; for(int i=1;i<=n2;i++) q[s+n1+i-1]=a2[i]; solve(s,s+n1-1,l,mid); solve(s+n1,t,mid+1,r); } int main() { while(scanf("%d",&n)!=EOF) { cnt=0,qcnt=0; int Min=inf,Max=-inf; for(int i=1;i<=n;i++) { scanf("%d",&a[i]); Min=min(Min,a[i]),Max=max(Max,a[i]); q[++cnt].x=i,q[cnt].y=a[i],q[cnt].val=1; } scanf("%d",&Q); for(int i=1;i<=Q;i++) { int op,l,r,k; scanf("%d",&op); if (op==1) { scanf("%d%d",&l,&k); q[++cnt].x=l,q[cnt].y=a[l],q[cnt].val=-1; q[++cnt].x=l,q[cnt].y=k,q[cnt].val=1; a[l]=k; Min=min(Min,a[l]),Max=max(Max,a[l]); } if (op==2) { scanf("%d%d%d",&l,&r,&k); q[++cnt].x=l,q[cnt].y=r,q[cnt].val=0,q[cnt].id=++qcnt; q[cnt].k=k,q[cnt].cur=0; } } solve(1,cnt,Min,Max); for(int i=1;i<=qcnt;i++) printf("%d\n",ans[i]); } return 0; }
转载请注明原文地址: https://www.6miu.com/read-71064.html

最新回复(0)