[Codeforces]817F. MEX Queries 离散化+线段树维护

xiaoxiao2021-02-28  120

[Codeforces]817F. MEX Queries

You are given a set of integer numbers, initially it is empty. You should perform n queries. There are three different types of queries: 1 l r — Add all missing numbers from the interval [l, r] 2 l r — Remove all present numbers from the interval [l, r] 3 l r — Invert the interval [l, r] — add all missing and remove all present numbers from the interval [l, r] After each query you should output MEX of the set — the smallest positive (MEX  ≥ 1) integer number which is not presented in the set. Input The first line contains one integer number n (1 ≤ n ≤ 105). Next n lines contain three integer numbers t, l, r (1 ≤ t ≤ 3, 1 ≤ l ≤ r ≤ 1018) — type of the query, left and right bounds. Output Print MEX of the set after each query. Examples input 3 1 3 4 3 1 6 2 1 3 output 1 3 1 input 4 1 1 3 3 5 6 2 4 4 3 1 6 output 4 4 4 1 Note Here are contents of the set after each query in the first example: {3, 4} — the interval [3, 4] is added {1, 2, 5, 6} — numbers {3, 4} from the interval [1, 6] got deleted and all the others are added {5, 6} — numbers {1, 2} got deleted

题意

给你一个无限长的数组,初始的时候都为0,操作1是把给定区间清零,操作2是把给定区间设为1,操作3把给定区间反转。每次操作后要输出最小位置的0。

题解

看到数据范围n<=10^5,结合题意可以考虑使用线段树维护对区间的修改操作。但是l,r<=10^18,所以首先要离散化一下。在使用线段树维护的时候,节点维护该区间数相加的总和。对于操作1和操作2,我们分别赋值为1和0,对于操作3,我们把区间反转,那么新的区间和就是区间的长度减去原来的区间和。然后每次查询最小位置的0,只需要看一下左儿子所代表的区间是否小于这个区间的长度,如果是就在左儿子,否则就在右儿子查找。

题目细节

这道题有很多坑人的点,首先,在离散化的时候必须把1也加上,因为答案可能为1;线段树在下传标记时要注意顺序;记录原来信息的数组必须得开long long,空间一定要开够。

代码

#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> #include<map> using namespace std; #define ll long long #define REP(i,a,b) for(register int i=(a),_end_=(b);i<=_end_;i++) #define DREP(i,a,b) for(register int i=(a),_end_=(b);i>=_end_;i--) #define EREP(i,a) for(register int i=start[(a)];i;i=e[i].next) inline int read() { int sum=0,p=1;char ch=getchar(); while(!(('0'<=ch && ch<='9') || ch=='-'))ch=getchar(); if(ch=='-')p=-1,ch=getchar(); while('0'<=ch && ch<='9')sum=sum*10+ch-48,ch=getchar(); return sum*p; } const int maxn=150020; map <ll,int> mp; int m,cnt; ll s[maxn*3],n; struct qu { ll l,r; int type; }a[maxn]; struct node { int s,lz,id;//s记录区间和,lz为懒标记,id维护区间是否反转 }c[maxn*10]; #define lc (o<<1) #define rc (o<<1 | 1) #define left lc,l,mid #define right rc,mid+1,r inline void make_tree(int o,int l,int r) { c[o].s=0;c[o].lz=-1;c[o].id=0; if(l==r)return; int mid=(l+r)>>1; make_tree(left); make_tree(right); } void maintain(int o,int l,int r) { c[o].s=c[lc].s+c[rc].s; } void pushdown(int o,int l,int r) { int mid=(l+r)>>1; if(c[o].lz!=-1)//下传懒标记,同时将儿子节点的反转标记清0 { c[lc].lz=c[rc].lz=c[o].lz; c[lc].s=(mid-l+1)*c[o].lz; c[rc].s=(r-mid)*c[o].lz; c[lc].id=c[rc].id=0; c[o].lz=-1; } if(c[o].id)//将儿子节点的反转标记也反转,同时维护儿子的区间和 { c[lc].id^=1; c[rc].id^=1; c[lc].s=(mid-l+1)-c[lc].s; c[rc].s=(r-mid)-c[rc].s; c[o].id=0; } } inline void updates(int ql,int qr,int x,int o,int l,int r) { pushdown(o,l,r); if(ql==l && r==qr)//把区间覆盖为x { c[o].s=(r-l+1)*x; c[o].lz=x; c[o].id=0; return; } int mid=(l+r)>>1; if(ql>mid) { updates(ql,qr,x,right); } else if(qr<=mid) { updates(ql,qr,x,left); }else { updates(ql,mid,x,left); updates(mid+1,qr,x,right); } maintain(o,l,r); } inline void updatex(int ql,int qr,int o,int l,int r) { pushdown(o,l,r); if(ql==l && r==qr)//把区间反转 { c[o].s=(r-l+1)-c[o].s; c[o].id^=1; return; } int mid=(l+r)>>1; if(ql>mid) { updatex(ql,qr,right); } else if(qr<=mid) { updatex(ql,qr,left); }else { updatex(ql,mid,left); updatex(mid+1,qr,right); } maintain(o,l,r); } void init() { m=read(); REP(i,1,m) { cin>>a[i].type>>a[i].l>>a[i].r; a[i].r++; s[++cnt]=a[i].l; s[++cnt]=a[i].r; } s[++cnt]=1;//答案中可能会有1,必须加上 sort(s+1,s+cnt+1); n=unique(s+1,s+cnt+1)-(s+1); REP(i,1,n)mp[s[i]]=i; make_tree(1,1,n); } void query(int o,int l,int r) { if(l==r) { cout<<s[l]<<endl; return; } int mid=(l+r)>>1; pushdown(o,l,r); if(c[lc].s<mid-l+1) query(left); else query(right); } void doing() { REP(i,1,m) { int type=a[i].type,l=mp[a[i].l],r=mp[a[i].r]-1; if(type==1) { updates(l,r,1,1,1,n); } else if(type==2) { updates(l,r,0,1,1,n); }else { updatex(l,r,1,1,n); } query(1,1,n); } } int main() { init(); doing(); return 0; }
转载请注明原文地址: https://www.6miu.com/read-66746.html

最新回复(0)