python多线程爬虫框架

xiaoxiao2021-02-28  96

最近仿照书上写了个多线程爬虫框架,在实现多进程的时候遇到了困难,不过打算开始学scrapy了也就暂时不管多进程的问题了

首先是缓存部分,在每次下载一个html的时候,首先会查询mongodb数据库中是否已经有该页面的缓存,如果没有,下载页面,如果有,获得缓存的页面

在mongodb中设置一个特殊索引用于删除超时的缓存(缓存默认保存30天),由于该类实现了 __getitem__和__setitem__方法,所以可以直接像操作字典一样操作这个对象

import pickle import zlib from datetime import datetime,timedelta from pymongo import MongoClient from bson.binary import Binary class MongoCache:     def __init__(self,client = None,expires = timedelta(days=30)):         #如果没有传递MongoClient对象,创建一个默认对象         if client is None:             self.client = MongoClient("localhost",12345)         #创建一个连接想数据库中缓存数据         self.db = self.client.cache         self.db.webpage.create_index("timestamp",expireAfterSeconds=expires.total_seconds())     def __getitem__(self, url):         '''         从数据库中获得该url的值         '''         record = self.db.webpage.find_one({"_id":url})         print(record)         if record:             return pickle.loads(zlib.decompress(record["result"]))             #return record["result"]         else:             raise KeyError(url+"不存在")     def __setitem__(self, url,result):         '''         将数据储存到数据库中         '''         record = {"result":Binary(zlib.compress(pickle.dumps(result))),                   "timestamp":datetime.utcnow()}         #record = {"result":result,"timestamp":datetime.utcnow()}         self.db.webpage.update({"_id":url},{"$set":record},upsert=True)

然后是实现下载的类,该类首先查看缓存,如果缓存中已有html并且响应码正常,则直接从缓存中获取html,否则下载页面

Throttle类实现了下载之间的延时功能

import urllib.request import time import datetime import re import socket import random from DiskCache import DiskCache DEFAULT_AGENT = "wswp" DEFAULT_DELAY = 5 DEFAULT_RETRIES = 1 DEFAULT_TIMEOUT = 60 class Downloader:     '''     用于下载html的类,可以传入的参数有     proxies;代理ip列表,会随机的在列表中抽取代理ip进行下载     delay:下载同一域名的等待时间,默认一秒     user_agent:主机名,默认python     num_retries:下载失败重新下载次数     timeout;下载超时时间     cache:缓存方式     '''     def __init__(self,proxies=None,delay = DEFAULT_DELAY,user_agent = DEFAULT_AGENT,num_retries = DEFAULT_RETRIES,timeout = DEFAULT_TIMEOUT,opener = None,cache=None):         #设置超时时间         socket.setdefaulttimeout(timeout)         self.throttle = Throttle(delay)         self.user_agent = user_agent         self.proxies = proxies         self.num_retries = num_retries         self.opener = opener         self.cache = cache     def   __call__(self,url):         '''         带有缓存功能的下载方法,通过类对象可以直接调用         '''         print(self.user_agent)         print("开始下载"+url)         result = None         if self.cache:             try:                 #从缓存中获取url对应的数据                 result = self.cache[url]                 print("测试代码4")             except KeyError:                 #如果获得KeyError异常,跳过                 pass             else:                 #如果是未成功下载的网页,重新下载                 if result["code"]:                     if self.num_retries > 0 and 500<result["code"]<600:                         result = None         # 如果页面不存在,下载该页面         if result is None:             #延迟默时间             self.throttle.wait(url)             if self.proxies:                 #如果有代理IP,从代理IP列表中随机抽取一个代理IP                 proxy = random.choice(self.proxies)             else:                 proxy = None             #构造请求头             headers = {"User-agent":self.user_agent}             #下载页面             result = self.download(url,headers,proxy = proxy,num_retries = self.num_retries)             '''             file = open("f:\\bilibili.html","wb")             file.write(result["html"])             file.close()         '''             if self.cache:                 #如果有缓存方式,缓存网页                 self.cache[url] = result         print(url,"页面下载完成")         return result["html"]     def download(self,url,headers,proxy,num_retries,data=None):         '''         用于下载一个页面,返回页面和与之对应的状态码         '''         #构建请求         request = urllib.request.Request(url,data,headers or {})         request.add_header("Cookie","finger=7360d3c2; UM_distinctid=15c59703db998-0f42b4b61afaa1-5393662-100200-15c59703dbcc1d; pgv_pvi=653650944; fts=1496149148; sid=bgsv74pg; buvid3=56812A21-4322-4C70-BF18-E6D646EA78694004infoc; CNZZDATA2724999=cnzz_eid=214248390-1496147515-https%3A%2F%2Fwww.baidu.com%2F&ntime=1496805293")         request.add_header("Upgrade-Insecure-Requests","1")         opener = self.opener or urllib.request.build_opener()         if proxy:             #如果有代理IP,使用代理IP             opener = urllib.request.build_opener(urllib.request.ProxyHandler(proxy))         try:             #下载网页             response = opener.open(request)             print("code是",response.code)             html = response.read().decode()             code = response.code         except Exception as e:             print("下载出现错误",str(e))             html = ''             if hasattr(e,"code"):                 code =e.code                 if num_retries > 0 and 500<code<600:                     #如果错误不是未找到网页,则重新下载num_retries次                     return self.download(url,headers,proxy,num_retries-1,data)             else:                 code = None         print(html)         return {"html":html,"code":code} class Throttle:     '''     按照延时,请求,代理IP等下载网页,处理网页中的link的类     '''     def __init__(self, delay):         self.delay = delay         self.domains = {}     def wait(self, url):         '''         每下载一个html之间暂停的时间         '''         # 获得域名         domain = urllib.parse.urlparse(url).netloc         # 获得上次访问此域名的时间         las_accessed = self.domains.get(domain)         if self.delay > 0 and las_accessed is not None:             # 计算需要强制暂停的时间 = 要求的间隔时间 - (现在的时间 - 上次访问的时间)             sleep_secs = self.delay - (datetime.datetime.now() - las_accessed).seconds             if sleep_secs > 0:                 time.sleep(sleep_secs)         # 存储此次访问域名的时间         self.domains[domain] = datetime.datetime.now()

然后是实现爬虫功能的类

import time import threading import re import urllib.parse import datetime from bs4 import BeautifulSoup from Downloader import Downloader from MongoCache import MongoCache SLEEP_TIME = 1 def get_links(html):     '''     获得一个页面上的所有链接     '''     bs = BeautifulSoup(html, "lxml")     link_labels = bs.find_all("a")     # for link in link_labels:     return [link_label.get('href', "default") for link_label in link_labels] def same_domain(url1, url2):     '''     判断域名书否相同     '''     return urllib.parse.urlparse(url1).netloc == urllib.parse.urlparse(url2).netloc def normalize(seed_url, link):     '''     用于将绝对路径转换为相对路径     '''     link, no_need = urllib.parse.urldefrag(link)     return urllib.parse.urljoin(seed_url, link) def threader_crawler(seed_url,resource_regiex=None,link_regiex = ".*",delay=5,cache=None,download_source_callback=None,user_agent="wswp",proxies=None, num_retries=1, max_threads=10, timeout=60,max_url=500):     downloaded = []     crawl_queue = [seed_url]     seen = set([seed_url])     D = Downloader(cache = cache,delay = delay,user_agent=user_agent,proxies=proxies,num_retries=num_retries,timeout=timeout)     print(user_agent)     def process_queue():         while True:             links = []             try:                 url = crawl_queue.pop()             except IndexError:                 break             else:                 html = D(url)                 downloaded.append(url)                 if download_source_callback:                     if resource_regiex and re.match(resource_regiex,url):                         download_source_callback(url,html)                 links.extend([link for link in get_links(html) if re.match(link_regiex,link)])                 for link in links:                     link = normalize(seed_url, link)                     if link not in seen:                         seen.add(link)                         if same_domain(seed_url,link):                             crawl_queue.append(link)                 print("已经发现的总网页数目为",len(seen))                 print("已经下载过的网页数目为",len(downloaded))                 print("还没有遍历过的网页数目为",len(crawl_queue))     threads=[]     while threads or crawl_queue:         if len(downloaded) == max_url:             return         for thread in threads:             if not thread.is_alive():                 threads.remove(thread)         while len(threads) < max_threads and crawl_queue:             print("线程数量为", len(threads))             thread = threading.Thread(target=process_queue)             thread.setDaemon(True)             thread.start()             print("线程数量为", len(threads))             threads.append(thread) def main():     starttime = datetime.datetime.now()     threader_crawler("http://www.xicidaili.com/",max_threads=1,max_url=10,user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36")     endtime = datetime.datetime.now()     print("花费时间",(endtime-starttime).total_seconds()) if __name__ == "__main__":     main()

经过测试,多线程爬虫速度要远远高于单个线程爬取,简单测试结果如下

开启30个线程爬取一百个网站用时31秒,平均一个用时0.31秒 开启10个线程爬取一百个网页用时69秒,平均一个用时0.69秒 开启1 个线程爬取一百个网站用时774秒,平均一个用时7.74秒

顺便实现了一个测试用的资源下载类,用于将电影天堂的所有资源页的电影保存到数据库

from lxml import etree from pymongo import MongoClient import urllib.request import re class download_source_callback: def __init__(self,client=None): if client: self.client = client else: self.client = MongoClient("localhost",12345) self.db = self.client.cache def __call__(self,url,html): title_regiex = "<title>(.*?)</title>" class_regiex = "类  别(.*?)<" director_regiex = ".*导  演(.*?)<" content_regiex = "简  介(.*?)<br /><br />◎" imdb_regiex = "IMDb评分 (.*?)<" douban_regiex = "豆瓣评分(.*?)<" html = html.decode("gbk","ignore") m = re.search(title_regiex,html) if m: title = m.group(1) else: title = None m = re.search(class_regiex,html) if m: class_name = m.group(1) else: class_name = None m = re.search(content_regiex,html) if m: text = m.group(1).replace("<br />","") content = text else: content = None m = re.search(douban_regiex,html) if m: douban = m.group(1) else: douban = None m = re.search(imdb_regiex,html) if m: imdb = m.group(1) else: imdb = None print(title,class_name,content,douban,imdb) move = { "name":title, "class":class_name, "introduce":content, "douban":douban, "imdb":imdb } self.db.moves.update({"_id":title},{"$set":move},upsert=True) print("成功储存一部电影"+title) if __name__ == "__main__": html= open("f:\资源.txt").read() a = download_source_callback() a("http://www.dytt8.net/html/gndy/jddy/20170529/54099.html",html)

转载请注明原文地址: https://www.6miu.com/read-65513.html

最新回复(0)