【斜率优化DP】BZOJ1010 [HNOI2008]玩具装箱toy

xiaoxiao2021-02-28  127

题面在这里

一道典型的斜率优化DP……

很明显,定义 f[i] 表示前i个玩具的费用 可以得到:

f[i]=Min{f[j]+(ij1+s[i]s[j]L)2} 其中 s[] c[] 的前缀和,方便统计加和 如下变换: f[i]=Min{f[j]+((s[i]+iL1)+(s[j]j))2} f[i]=Min{f[j]+(s[j]+j)22(s[i]+iL1)(s[j]+j)}+(s[i]+iL1)2 设: k=2(s[i]+iL1) x=s[j]+j y=f[j]+(s[j]+j)2 把Min{}里面的部分看做b 就有: b=kx+y y=kx+b 然后就可以直接套用斜率优化DP了

附上代码:

#include<cstdio> #include<cstring> #include<algorithm> #define LL long long #define sqr(x) ((x)*(x)) using namespace std; const int maxn=50005; int n,L; LL s[maxn],f[maxn]; #define nc getchar inline int red(){ int tot=0,f=1;char ch=nc(); while (ch<'0'||'9'<ch) {if (ch=='-') f=-f;ch=nc();} while ('0'<=ch&&ch<='9') tot=tot*10+ch-48,ch=nc(); return tot*f; } struct point{ LL x,y; point() {} point(LL a,LL b):x(a),y(b) {} point operator-(const point&b) {return point(x-b.x,y-b.y);} }stk[maxn]; typedef point vec; LL cross(vec a,vec b){ return a.x*b.y-b.x*a.y; } LL getb(point a,LL k){ return -k*a.x+a.y; } int main(){ n=red(),L=red(); for (int i=1;i<=n;i++) s[i]=s[i-1]+red(); memset(f,63,sizeof(f)); f[0]=0; int len=1,now=1;stk[1]=point(0,0); for (int i=1;i<=n;i++){ LL k=2*(i+s[i]-1-L); while (now<len&&getb(stk[now+1],k)<getb(stk[now],k)) now++; f[i]=getb(stk[now],k)+sqr(i+s[i]-1-L); point a(i+s[i],f[i]+sqr(i+s[i])); while (len>1&&cross(stk[len]-stk[len-1],a-stk[len-1])<0) len--; now=min(now,len);stk[++len]=a; } printf("%lld",f[n]); return 0; }
转载请注明原文地址: https://www.6miu.com/read-65444.html

最新回复(0)