算法学习笔记--贪婪算法

xiaoxiao2021-02-28  122

算法学习笔记–贪婪算法

学习目标

如何处理不可能完成的任务:没有快速算法的问题学习近似算法,可以快速找到NP完全问题的近似解学习贪婪策略,一种非常简单的问题解决策略

什么是贪婪算法?

贪婪算法就是每一步都采取最优的做法。 也可以说是每一步都是选择的局部最优解。

背包问题

幂集

设有集合A,由A的所有子集(包括空集)组成的集合,称为A的幂集,记作2^A 。 所以特征选择就是一个幂集问题,很难找出最优的特征集合。

实现

集合覆盖 广播覆盖州的问题:以最少的广播覆盖所有的州

def function(): pass if __name__ == '__main__': states_needed = set(["mt","wa","or","id","nv","ut","ca","az"]) stations = {} stations["kone"] = set(["id","nv","ut"]) stations["ktwo"] = set(["wa","id","mt"]) stations["kthree"] = set(["or","nv","ca"]) stations["kfour"] = set(["nv","ut"]) stations["kfive"] = set(["ca","az"]) final_stations = set() while states_needed: best_stations = None states_covered = set() for station, states_for_station in stations.items(): print 'station, states_for_station: ', station, states_for_station covered = states_needed & states_for_station if len(covered) > len(states_covered): best_stations = station states_covered = covered stations.pop(best_stations) states_needed -= states_covered print 'states_needed: ',states_needed final_stations.add(best_stations) print 'final_stations: ',final_stations
转载请注明原文地址: https://www.6miu.com/read-65290.html

最新回复(0)