Linux下spi驱动开发

xiaoxiao2021-02-28  95

一、概述

基于子系统去开发驱动程序已经是linux内核中普遍的做法了。前面写过基于I2C子系统的驱动开发。本文介绍另外一种常用总线SPI的开发方法。SPI子系统的开发和I2C有很多的相似性,大家可以对比学习。本主题分为两个部分叙述,第一部分介绍基于SPI子系统开发的理论框架;第二部分以华清远见教学平台FS_S5PC100上的M25P10芯片为例(内核版本2.6.29),编写一个SPI驱动程序实例。

二、SPI总线协议简介

介绍驱动开发前,需要先熟悉下SPI通讯协议中的几个关键的地方,后面在编写驱动时,需要考虑相关因素。

SPI总线由MISO(串行数据输入)、MOSI(串行数据输出)、SCK(串行移位时钟)、CS(使能信号)4个信号线组成。如FS_S5PC100上的M25P10芯片接线为:

 

上图中M25P10的D脚为它的数据输入脚,Q为数据输出脚,C为时钟脚。

SPI常用四种数据传输模式,主要差别在于:输出串行同步时钟极性(CPOL)和相位(CPHA)可以进行配置。如果CPOL= 0,串行同步时钟的空闲状态为低电平;如果CPOL= 1,串行同步时钟的空闲状态为高电平。如果CPHA= 0,在串行同步时钟的前沿(上升或下降)数据被采样;如果CPHA = 1,在串行同步时钟的后沿(上升或下降)数据被采样。

 

 

这四种模式中究竟选择哪种模式取决于设备。如M25P10的手册中明确它可以支持的两种模式为:CPOL=0 CPHA=0  和 CPOL=1 CPHA=1

 

三、linux下SPI驱动开发

首先明确SPI驱动层次,如下图:       

 

我们以上面的这个图为思路

1、 Platform bus

Platform bus对应的结构是platform_bus_type,这个内核开始就定义好的。我们不需要定义。

2、Platform_device

SPI控制器对应platform_device的定义方式,同样以S5PC100中的SPI控制器为例,参看arch/arm/plat-s5pc1xx/dev-spi.c文件

点击(此处)折叠或打开

struct platform_device s3c_device_spi0 = {                           .name = "s3c64xx-spi", //名称,要和Platform_driver匹配                 .id = 0, //第0个控制器,S5PC100中有3个控制器                 .num_resources = ARRAY_SIZE(s5pc1xx_spi0_resource), //占用资源的种类                 .resource = s5pc1xx_spi0_resource, //指向资源结构数组的指针                 .dev = {                                   .dma_mask = &spi_dmamask, //dma寻址范围                          .coherent_dma_mask = DMA_BIT_MASK(32), //可以通过关闭cache等措施保证一致性的dma寻址范围                         .platform_data = &s5pc1xx_spi0_pdata, //特殊的平台数据,参看后文                 },                 }; static struct s3c64xx_spi_cntrlr_info s5pc1xx_spi0_pdata = {                   .cfg_gpio = s5pc1xx_spi_cfg_gpio, //用于控制器管脚的IO配置         .fifo_lvl_mask = 0x7f,                   .rx_lvl_offset = 13,                 }; static int s5pc1xx_spi_cfg_gpio(struct platform_device *pdev)                   {                   switch (pdev->id) {                   case 0:                           s3c_gpio_cfgpin(S5PC1XX_GPB(0), S5PC1XX_GPB0_SPI_MISO0);                           s3c_gpio_cfgpin(S5PC1XX_GPB(1), S5PC1XX_GPB1_SPI_CLK0);                           s3c_gpio_cfgpin(S5PC1XX_GPB(2), S5PC1XX_GPB2_SPI_MOSI0);                           s3c_gpio_setpull(S5PC1XX_GPB(0), S3C_GPIO_PULL_UP);                           s3c_gpio_setpull(S5PC1XX_GPB(1), S3C_GPIO_PULL_UP);                           s3c_gpio_setpull(S5PC1XX_GPB(2), S3C_GPIO_PULL_UP);                         break; case 1:                           s3c_gpio_cfgpin(S5PC1XX_GPB(4), S5PC1XX_GPB4_SPI_MISO1);                           s3c_gpio_cfgpin(S5PC1XX_GPB(5), S5PC1XX_GPB5_SPI_CLK1);                           s3c_gpio_cfgpin(S5PC1XX_GPB(6), S5PC1XX_GPB6_SPI_MOSI1);                           s3c_gpio_setpull(S5PC1XX_GPB(4), S3C_GPIO_PULL_UP);                           s3c_gpio_setpull(S5PC1XX_GPB(5), S3C_GPIO_PULL_UP);                           s3c_gpio_setpull(S5PC1XX_GPB(6), S3C_GPIO_PULL_UP);                         break; case 2:                           s3c_gpio_cfgpin(S5PC1XX_GPG3(0), S5PC1XX_GPG3_0_SPI_CLK2);                           s3c_gpio_cfgpin(S5PC1XX_GPG3(2), S5PC1XX_GPG3_2_SPI_MISO2);                           s3c_gpio_cfgpin(S5PC1XX_GPG3(3), S5PC1XX_GPG3_3_SPI_MOSI2);                           s3c_gpio_setpull(S5PC1XX_GPG3(0), S3C_GPIO_PULL_UP);                           s3c_gpio_setpull(S5PC1XX_GPG3(2), S3C_GPIO_PULL_UP);                           s3c_gpio_setpull(S5PC1XX_GPG3(3), S3C_GPIO_PULL_UP);                         break; default:                           dev_err(&pdev->dev, "Invalid SPI Controller number!");                           return -EINVAL;                   }

3、Platform_driver

再看platform_driver,参看drivers/spi/spi_s3c64xx.c文件

点击(此处)折叠或打开

static struct platform_driver s3c64xx_spi_driver = {                           .driver = {                                   .name = "s3c64xx-spi", //名称,和platform_device对应                         .owner = THIS_MODULE,                           },                           .remove = s3c64xx_spi_remove,                           .suspend = s3c64xx_spi_suspend,                           .resume = s3c64xx_spi_resume,                 }; platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe)//注册s3c64xx_spi_driver

和平台中注册的platform_device匹配后,调用s3c64xx_spi_probe。然后根据传入的platform_device参数,构建一个用于描述SPI控制器的结构体spi_master,并注册。spi_register_master(master)。后续注册的spi_device需要选定自己的spi_master,并利用spi_master提供的传输功能传输spi数据。

和I2C类似,SPI也有一个描述控制器的对象叫spi_master。其主要成员是主机控制器的序号(系统中可能存在多个SPI主机控制器)、片选数量、SPI模式和时钟设置用到的函数、数据传输用到的函数等。

点击(此处)折叠或打开

struct spi_master {                           struct device dev;                           s16 bus_num; //表示是SPI主机控制器的编号。由平台代码决定                 u16 num_chipselect; //控制器支持的片选数量,即能支持多少个spi设备                 int (*setup)(struct spi_device *spi); //针对设备设置SPI的工作时钟及数据传输模式等。在spi_add_device函数中调用。                 int (*transfer)(struct spi_device *spi,                           struct spi_message *mesg); //实现数据的双向传输,可能会睡眠                 void (*cleanup)(struct spi_device *spi); //注销时调用         };

4、Spi bus

Spi总线对应的总线类型为spi_bus_type,在内核的drivers/spi/spi.c中定义

点击(此处)折叠或打开

struct bus_type spi_bus_type = {                           .name = "spi",                           .dev_attrs = spi_dev_attrs,                           .match = spi_match_device,                           .uevent = spi_uevent,                           .suspend = spi_suspend,                           .resume = spi_resume,                 };

对应的匹配规则是(高版本中的匹配规则会稍有变化,引入了id_table,可以匹配多个spi设备名称):

点击(此处)折叠或打开

static int spi_match_device(struct device *dev, struct device_driver *drv)                   {                           const struct spi_device *spi = to_spi_device(dev);                           return strcmp(spi->modalias, drv->name) == 0;                 }

5、spi_device

下面该讲到spi_device的构建与注册了。spi_device对应的含义是挂接在spi总线上的一个设备,所以描述它的时候应该明确它自身的设备特性、传输要求、及挂接在哪个总线上。

点击(此处)折叠或打开

static struct spi_board_info s3c_spi_devs[] __initdata = {                           {                                   .modalias = "m25p10",                                    .mode = SPI_MODE_0, //CPOL=0, CPHA=0 此处选择具体数据传输模式                         .max_speed_hz = 10000000, //最大的spi时钟频率                         /* Connected to SPI-0 as 1st Slave */                                   .bus_num = 0, //设备连接在spi控制器0上                         .chip_select = 0, //片选线号,在S5PC100的控制器驱动中没有使用它作为片选的依据,而是选择了下文controller_data里的方法。                         .controller_data = &smdk_spi0_csi[0],                           },                   };                   static struct s3c64xx_spi_csinfo smdk_spi0_csi[] = {                           [0] = {                                   .set_level = smdk_m25p10_cs_set_level,                                   .fb_delay = 0x3,                           },                   };                   static void smdk_m25p10_cs_set_level(int high) //spi控制器会用这个方法设置cs                   {                           u32 val;                           val = readl(S5PC1XX_GPBDAT);                           if (high)                                   val |= (1<<3);                           else                                   val &= ~(1<<3);                           writel(val, S5PC1XX_GPBDAT);                 } spi_register_board_info(s3c_spi_devs, ARRAY_SIZE(s3c_spi_devs));//注册spi_board_info。这个代码会把spi_board_info注册要链表board_list上。

事实上上文提到的spi_master的注册会在spi_register_board_info之后,spi_master注册的过程中会调用scan_boardinfo扫描board_list,找到挂接在它上面的spi设备,然后创建并注册spi_device。

点击(此处)折叠或打开

static void scan_boardinfo(struct spi_master *master)                   {                           struct boardinfo *bi;                           mutex_lock(&board_lock);                           list_for_each_entry(bi, &board_list, list) {                                   struct spi_board_info *chip = bi->board_info;                                   unsigned n;                                   for (= bi->n_board_info; n > 0; n--, chip++) {                                           if (chip->bus_num != master->bus_num)                                           continue;                                           /* NOTE: this relies on spi_new_device to                                           * issue diagnostics when given bogus inputs                                           */                                           (void) spi_new_device(master, chip); //创建并注册了spi_device                                   }                           }                           mutex_unlock(&board_lock);                 }

6、spi_driver

本文先以linux内核中的/driver/mtd/devices/m25p80.c驱动为参考。

点击(此处)折叠或打开

static struct spi_driver m25p80_driver = { //spi_driver的构建                 .driver = {                                   .name = "m25p80",                                   .bus = &spi_bus_type,                                   .owner = THIS_MODULE,                           },                           .probe = m25p_probe,                           .remove = __devexit_p(m25p_remove),                           */                 }; spi_register_driver(&m25p80_driver);//spi driver的注册 在有匹配的spi device时,会调用m25p_probe static int __devinit m25p_probe(struct spi_device *spi)                   {                   ……         }

根据传入的spi_device参数,可以找到对应的spi_master。接下来就可以利用spi子系统为我们完成数据交互了。可以参看m25p80_read函数。要完成传输,先理解下面几个结构的含义:(这两个结构的定义及详细注释参见include/linux/spi/spi.h)

spi_message:描述一次完整的传输,即cs信号从高->底->高的传输         spi_transfer:多个spi_transfer够成一个spi_message                 举例说明:m25p80的读过程如下图

 

可以分解为两个spi_ transfer一个是写命令,另一个是读数据。具体实现参见m25p80.c中的m25p80_read函数。下面内容摘取之此函数。

点击(此处)折叠或打开

struct spi_transfer t[2]; //定义了两个spi_transfer                   struct spi_message m; //定义了两个spi_message                 spi_message_init(&m); //初始化其transfers链表 t[0].tx_buf = flash->command;                   t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE; //定义第一个transfer的写指针和长度         spi_message_add_tail(&t[0], &m); //添加到spi_message                   t[1].rx_buf = buf;                 t[1].len = len; //定义第二个transfer的读指针和长度 spi_message_add_tail(&t[1], &m); //添加到spi_message                   flash->command[0] = OPCODE_READ;                   flash->command[1] = from >> 16;                   flash->command[2] = from >> 8;                 flash->command[3] = from; //初始化前面写buf的内容 spi_sync(flash->spi, &m); //调用spi_master发送spi_message // spi_sync为同步方式发送,还可以用spi_async异步方式,那样的话,需要设置回调完成函数。 另外你也可以选择一些封装好的更容易使用的函数,这些函数可以在include/linux/spi/spi.h文件中找到,如: extern int spi_write_then_read(struct spi_device *spi,                           const u8 *txbuf, unsigned n_tx,                           u8 *rxbuf, unsigned n_rx);

这篇博文就到这了,下篇给出一个针对m25p10完整的驱动程序。  Linux下spi驱动开发之m25p10驱动测试

目标:在华清远见的FS_S5PC100平台上编写一个简单的spi驱动模块,在probe阶段实现对m25p10的ID号探测、flash擦除、flash状态读取、flash写入、flash读取等操作。代码已经经过测试,运行于2.6.35内核。理解下面代码需要参照m25p10的芯片手册。其实下面的代码和处理器没有太大关系,这也是spi子系统的分层特点。

点击(此处)折叠或打开

#include <linux/platform_device.h>          #include <linux/spi/spi.h>          #include <linux/init.h>         #include <linux/module.h>         #include <linux/device.h>         #include <linux/interrupt.h>         #include <linux/mutex.h>         #include <linux/slab.h> // kzalloc         #include <linux/delay.h> #define FLASH_PAGE_SIZE 256 /* Flash Operating Commands */         #define CMD_READ_ID 0x9f         #define CMD_WRITE_ENABLE 0x06          #define CMD_BULK_ERASE 0xc7         #define CMD_READ_BYTES 0x03         #define CMD_PAGE_PROGRAM 0x02         #define CMD_RDSR 0x05  /* Status Register bits. */         #define SR_WIP 1 /* Write in progress */         #define SR_WEL 2 /* Write enable latch */ /* ID Numbers */         #define MANUFACTURER_ID 0x20         #define DEVICE_ID 0x1120 /* Define max times to check status register before we give up. */         #define MAX_READY_WAIT_COUNT 100000         #define CMD_SZ 4 struct m25p10a {                 struct spi_device *spi;                 struct mutex lock;                 char erase_opcode;                 char cmd[ CMD_SZ ];         }; /*         * Internal Helper functions          */ /*         * Read the status register, returning its value in the location         * Return the status register value.         * Returns negative if error occurred.         */         static int read_sr(struct m25p10a *flash)         {                 ssize_t retval;                 u8 code = CMD_RDSR;                 u8 val;         retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);         if (retval < 0) {                        dev_err(&flash->spi->dev, "error %d reading SR\n", (int) retval);                        return retval;                  }         return val;         } /*         * Service routine to read status register until ready, or timeout occurs.         * Returns non-zero if error.         */         static int wait_till_ready(struct m25p10a *flash)         {                 int count;                 int sr;         /* one chip guarantees max 5 msec wait here after page writes,                 * but potentially three seconds (!) after page erase.                 */                 for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {                         if ((sr = read_sr(flash)) < 0)                                 break;                         else if (!(sr & SR_WIP))                                 return 0;                 /* REVISIT sometimes sleeping would be best */                 }                   printk( "in (%s): count = %d\n", count );         return 1;         } /*         * Set write enable latch with Write Enable command.         * Returns negative if error occurred.         */         static inline int write_enable( struct m25p10a *flash )         {                 flash->cmd[0] = CMD_WRITE_ENABLE;                 return spi_write( flash->spi, flash->cmd, 1 );         } /*         * Erase the whole flash memory         *         * Returns 0 if successful, non-zero otherwise.         */         static int erase_chip( struct m25p10a *flash )         {                 /* Wait until finished previous write command. */                 if (wait_till_ready(flash))                         return -1;         /* Send write enable, then erase commands. */                 write_enable( flash );                 flash->cmd[0] = CMD_BULK_ERASE;                 return spi_write( flash->spi, flash->cmd, 1 );         } /*         * Read an address range from the flash chip. The address range         * may be any size provided it is within the physical boundaries.         */         static int m25p10a_read( struct m25p10a *flash, loff_t from, size_t len, char *buf )         {                 int r_count = 0, i;         flash->cmd[0] = CMD_READ_BYTES;                 flash->cmd[1] = from >> 16;                 flash->cmd[2] = from >> 8;                 flash->cmd[3] = from;              #if 1                 struct spi_transfer st[2];                 struct spi_message msg;                      spi_message_init( &msg );                 memset( st, 0, sizeof(st) );         flash->cmd[0] = CMD_READ_BYTES;                 flash->cmd[1] = from >> 16;                 flash->cmd[2] = from >> 8;                 flash->cmd[3] = from;         st[ 0 ].tx_buf = flash->cmd;                 st[ 0 ].len = CMD_SZ;                 spi_message_add_tail( &st[0], &msg );         st[ 1 ].rx_buf = buf;                 st[ 1 ].len = len;                 spi_message_add_tail( &st[1], &msg );         mutex_lock( &flash->lock );                      /* Wait until finished previous write command. */                 if (wait_till_ready(flash)) {                         mutex_unlock( &flash->lock );                         return -1;                 }         spi_sync( flash->spi, &msg );                 r_count = msg.actual_length - CMD_SZ;                 printk( "in (%s): read %d bytes\n", __func__, r_count );                 for( i = 0; i < r_count; i++ ) {                         printk( "0xx\n", buf[ i ] );                 }         mutex_unlock( &flash->lock );         #endif         return 0;         } /*         * Write an address range to the flash chip. Data must be written in         * FLASH_PAGE_SIZE chunks. The address range may be any size provided         * it is within the physical boundaries.         */         static int m25p10a_write( struct m25p10a *flash, loff_t to, size_t len, const char *buf )         {                 int w_count = 0, i, page_offset;                 struct spi_transfer st[2];                 struct spi_message msg;         #if 1                 if (wait_till_ready(flash)) { //读状态,等待ready                 mutex_unlock( &flash->lock );                 return -1;                 }         #endif                 write_enable( flash ); //写使能                       spi_message_init( &msg );                 memset( st, 0, sizeof(st) );         flash->cmd[0] = CMD_PAGE_PROGRAM;                 flash->cmd[1] = to >> 16;                 flash->cmd[2] = to >> 8;                 flash->cmd[3] = to;         st[ 0 ].tx_buf = flash->cmd;                 st[ 0 ].len = CMD_SZ;                 spi_message_add_tail( &st[0], &msg );         st[ 1 ].tx_buf = buf;                 st[ 1 ].len = len;                 spi_message_add_tail( &st[1], &msg );         mutex_lock( &flash->lock );         /* get offset address inside a page */                 page_offset = to % FLASH_PAGE_SIZE;          /* do all the bytes fit onto one page? */                 if( page_offset + len <= FLASH_PAGE_SIZE ) { // yes                         st[ 1 ].len = len;                          printk("%d, cmd = %d\n", st[ 1 ].len, *(char *)st[0].tx_buf);                         //while(1)                         {                         spi_sync( flash->spi, &msg );                         }                         w_count = msg.actual_length - CMD_SZ;                 }                 else { // no                 }                 printk( "in (%s): write %d bytes to flash in total\n", __func__, w_count );                 mutex_unlock( &flash->lock );                 return 0;         } static int check_id( struct m25p10a *flash )          {                  char buf[10] = {0};                  flash->cmd[0] = CMD_READ_ID;                 spi_write_then_read( flash->spi, flash->cmd, 1, buf, 3 );                  printk( "Manufacture ID: 0x%x\n", buf[0] );                 printk( "Device ID: 0x%x\n", buf[1] | buf[2] << 8 );                 return buf[2] << 16 | buf[1] << 8 | buf[0];          } static int m25p10a_probe(struct spi_device *spi)          {                  int ret = 0;                 struct m25p10a *flash;                 char buf[ 256 ];                 printk( "%s was called\n", __func__ );                 flash = kzalloc( sizeof(struct m25p10a), GFP_KERNEL );                 if( !flash ) {                         return -ENOMEM;                 }                 flash->spi = spi;                 mutex_init( &flash->lock );                 /* save flash as driver'private data */                 spi_set_drvdata( spi, flash );                      check_id( flash ); //读取ID         #if 1                 ret = erase_chip( flash ); //擦除                  if( ret < 0 ) {                         printk( "erase the entirely chip failed\n" );                 }                 printk( "erase the whole chip done\n" );                 memset( buf, 0x7, 256 );                 m25p10a_write( flash, 0, 20, buf); //0地址写入20个7                 memset( buf, 0, 256 );                 m25p10a_read( flash, 0, 25, buf ); //0地址读出25个数          #endif                 return 0;          } static int m25p10a_remove(struct spi_device *spi)          {                  return 0;          } static struct spi_driver m25p10a_driver = {                  .probe = m25p10a_probe,                  .remove = m25p10a_remove,                  .driver = {                          .name = "m25p10a",                  },          }; static int __init m25p10a_init(void)          {                  return spi_register_driver(&m25p10a_driver);          } static void __exit m25p10a_exit(void)          {                  spi_unregister_driver(&m25p10a_driver);          } module_init(m25p10a_init);          module_exit(m25p10a_exit); MODULE_DESCRIPTION("m25p10a driver for FS_S5PC100"); MODULE_LICENSE("GPL");
转载请注明原文地址: https://www.6miu.com/read-64358.html

最新回复(0)