深入理解 Android 之 View 的绘制流程

xiaoxiao2021-02-28  93

本文转载自:http://www.cnblogs.com/jycboy/p/6219915.html

概述

本篇文章会从源码(基于Android 6.0)角度分析Android中View的绘制流程,侧重于对整体流程的分析,对一些难以理解的点加以重点阐述,目的是把View绘制的整个流程把握好,而对于特定实现细节则可以日后再对相应源码进行研读。 在进行实际的分析之前,我们先来看下面这张图:

我们来对上图做出简单解释:DecorView是一个应用窗口的根容器,它本质上是一个FrameLayout。DecorView有唯一一个子View,它是一个垂直LinearLayout,包含两个子元素,一个是TitleView(ActionBar的容器),另一个是ContentView(窗口内容的容器)。关于ContentView,它是一个FrameLayout(android.R.id.content),我们平常用的setContentView就是设置它的子View。上图还表达了每个Activity都与一个Window(具体来说是PhoneWindow)相关联,用户界面则由Window所承载。

Window

Window即窗口,这个概念在Android Framework中的实现为android.view.Window这个抽象类,这个抽象类是对Android系统中的窗口的抽象。在介绍这个类之前,我们先来看看究竟什么是窗口呢?

实际上,窗口是一个宏观的思想,它是屏幕上用于绘制各种UI元素及响应用户输入事件的一个矩形区域。通常具备以下两个特点:

独立绘制,不与其它界面相互影响;不会触发其它界面的输入事件;

在Android系统中,窗口是独占一个Surface实例的显示区域,每个窗口的Surface由WindowManagerService分配。我们可以把Surface看作一块画布,应用可以通过Canvas或OpenGL在其上面作画。画好之后,通过SurfaceFlinger将多块Surface按照特定的顺序(即Z-order)进行混合,而后输出到FrameBuffer中,这样用户界面就得以显示。

android.view.Window这个抽象类可以看做Android中对窗口这一宏观概念所做的约定,而PhoneWindow这个类是Framework为我们提供的Android窗口概念的具体实现。接下来我们先来介绍一下android.view.Window这个抽象类。

这个抽象类包含了三个核心组件:

WindowManager.LayoutParams: 窗口的布局参数;Callback: 窗口的回调接口,通常由Activity实现;ViewTree: 窗口所承载的控件树。

下面我们来看一下Android中Window的具体实现(也是唯一实现)——PhoneWindow。

PhoneWindow

前面我们提到了,PhoneWindow这个类是Framework为我们提供的Android窗口的具体实现。我们平时调用setContentView()方法设置Activity的用户界面时,实际上就完成了对所关联的PhoneWindow的ViewTree的设置。我们还可以通过Activity类的requestWindowFeature()方法来定制Activity关联PhoneWindow的外观,这个方法实际上做的是把我们所请求的窗口外观特性存储到了PhoneWindow的mFeatures成员中,在窗口绘制阶段生成外观模板时,会根据mFeatures的值绘制特定外观。

从setContentView()说开去

在分析setContentView()方法前,我们需要明确:这个方法只是完成了Activity的ContentView的创建,而并没有执行View的绘制流程。 当我们自定义Activity继承自android.app.Activity时候,调用的setContentView()方法是Activity类的,源码如下:

? 1 2 3 4 public void setContentView( @LayoutRes int layoutResID) {       getWindow().setContentView(layoutResID);       . . . }

getWindow()方法会返回Activity所关联的PhoneWindow,也就是说,实际上调用到了PhoneWindow的setContentView()方法,源码如下:

? @Override public void setContentView( int layoutResID) {    if (mContentParent == null ) {      // mContentParent即为上面提到的ContentView的父容器,若为空则调用installDecor()生成      installDecor();    } else if (!hasFeature(FEATURE_CONTENT_TRANSITIONS)) {      // 具有FEATURE_CONTENT_TRANSITIONS特性表示开启了Transition      // mContentParent不为null,则移除decorView的所有子View      mContentParent.removeAllViews();    }    if (hasFeature(FEATURE_CONTENT_TRANSITIONS)) {      // 开启了Transition,做相应的处理,我们不讨论这种情况      // 感兴趣的同学可以参考源码      . . .    } else {      // 一般情况会来到这里,调用mLayoutInflater.inflate()方法来填充布局      // 填充布局也就是把我们设置的ContentView加入到mContentParent中      mLayoutInflater.inflate(layoutResID, mContentParent);    }    . . .    // cb即为该Window所关联的Activity    final Callback cb = getCallback();    if (cb != null && !isDestroyed()) {      // 调用onContentChanged()回调方法通知Activity窗口内容发生了改变      cb.onContentChanged();    }      . . . } 

LayoutInflater.inflate()

在上面我们看到了,PhoneWindow的setContentView()方法中调用了LayoutInflater的inflate()方法来填充布局,这个方法的源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 public View inflate( @LayoutRes int resource, @Nullable ViewGroup root) {    return inflate(resource, root, root != null ); }   public View inflate( @LayoutRes int resource, @Nullable ViewGroup root, boolean attachToRoot) {    final Resources res = getContext().getResources();    . . .    final XmlResourceParser parser = res.getLayout(resource);    try {      return inflate(parser, root, attachToRoot);    } finally {      parser.close();    } }

在PhoneWindow的setContentView()方法中传入了decorView作为LayoutInflater.inflate()的root参数,我们可以看到,通过层层调用,最终调用的是inflate(XmlPullParser, ViewGroup, boolean)方法来填充布局。这个方法的源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 public View inflate(XmlPullParser parser, @Nullable ViewGroup root, boolean attachToRoot) {    synchronized (mConstructorArgs) {      . . .      final Context inflaterContext = mContext;      final AttributeSet attrs = Xml.asAttributeSet(parser);      Context lastContext = (Context) mConstructorArgs[ 0 ];      mConstructorArgs[ 0 ] = inflaterContext;        View result = root;        try {        // Look for the root node.        int type;        // 一直读取xml文件,直到遇到开始标记        while ((type = parser.next()) != XmlPullParser.START_TAG &&            type != XmlPullParser.END_DOCUMENT) {          // Empty         }        // 最先遇到的不是开始标记,报错        if (type != XmlPullParser.START_TAG) {          throw new InflateException(parser.getPositionDescription() + ": No start tag found!" );        }          final String name = parser.getName();        . . .        // 单独处理<merge>标签,不熟悉的同学请参考官方文档的说明        if (TAG_MERGE.equals(name)) {          // 若包含<merge>标签,父容器(即root参数)不可为空且attachRoot须为true,否则报错          if (root == null || !attachToRoot) {            throw new InflateException( "<merge /> can be used only with a valid " + "ViewGroup root and attachToRoot=true" );          }            // 递归地填充布局          rInflate(parser, root, inflaterContext, attrs, false );       } else {          // temp为xml布局文件的根View          final View temp = createViewFromTag(root, name, inflaterContext, attrs);          ViewGroup.LayoutParams params = null ;          if (root != null ) {            . . .            // 获取父容器的布局参数(LayoutParams)            params = root.generateLayoutParams(attrs);            if (!attachToRoot) {              // 若attachToRoot参数为false,则我们只会将父容器的布局参数设置给根View              temp.setLayoutParams(params);            }            }            // 递归加载根View的所有子View          rInflateChildren(parser, temp, attrs, true );          . . .            if (root != null && attachToRoot) {            // 若父容器不为空且attachToRoot为true,则将父容器作为根View的父View包裹上来            root.addView(temp, params);          }            // 若root为空或是attachToRoot为false,则以根View作为返回值          if (root == null || !attachToRoot) {             result = temp;          }        }        } catch (XmlPullParserException e) {        . . .      } catch (Exception e) {        . . .      } finally {          . . .      }      return result;    } }

在上面的源码中,首先对于布局文件中的<merge>标签进行单独处理,调用rInflate()方法来递归填充布局。这个方法的源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 void rInflate(XmlPullParser parser, View parent, Context context,      AttributeSet attrs, boolean finishInflate) throws XmlPullParserException, IOException {      // 获取当前标记的深度,根标记的深度为0      final int depth = parser.getDepth();      int type;      while (((type = parser.next()) != XmlPullParser.END_TAG ||          parser.getDepth() > depth) && type != XmlPullParser.END_DOCUMENT) {        // 不是开始标记则继续下一次迭代        if (type != XmlPullParser.START_TAG) {          continue ;        }        final String name = parser.getName();        // 对一些特殊标记做单独处理        if (TAG_REQUEST_FOCUS.equals(name)) {          parseRequestFocus(parser, parent);        } else if (TAG_TAG.equals(name)) {          parseViewTag(parser, parent, attrs);        } else if (TAG_INCLUDE.equals(name)) {          if (parser.getDepth() == 0 ) {            throw new InflateException( "<include /> cannot be the root element" );          }          // 对<include>做处理          parseInclude(parser, context, parent, attrs);        } else if (TAG_MERGE.equals(name)) {          throw new InflateException( "<merge /> must be the root element" );        } else {          // 对一般标记的处理          final View view = createViewFromTag(parent, name, context, attrs);          final ViewGroup viewGroup = (ViewGroup) parent;          final ViewGroup.LayoutParams params=viewGroup.generateLayoutParams(attrs);          // 递归地加载子View          rInflateChildren(parser, view, attrs, true );          viewGroup.addView(view, params);        }      }        if (finishInflate) {          parent.onFinishInflate();      } }

我们可以看到,上面的inflate()和rInflate()方法中都调用了rInflateChildren()方法,这个方法的源码如下:

? 1 2 3 final void rInflateChildren(XmlPullParser parser, View parent, AttributeSet attrs, boolean finishInflate) throws XmlPullParserException, IOException {      rInflate(parser, parent, parent.getContext(), attrs, finishInflate); }

从源码中我们可以知道,rInflateChildren()方法实际上调用了rInflate()方法。

到这里,setContentView()的整体执行流程我们就分析完了,至此我们已经完成了Activity的ContentView的创建与设置工作。接下来,我们开始进入正题,分析View的绘制流程。

ViewRoot

在介绍View的绘制前,首先我们需要知道是谁负责执行View绘制的整个流程。实际上,View的绘制是由ViewRoot来负责的。每个应用程序窗口的decorView都有一个与之关联的ViewRoot对象,这种关联关系是由WindowManager来维护的。

那么decorView与ViewRoot的关联关系是在什么时候建立的呢?答案是Activity启动时,ActivityThread.handleResumeActivity()方法中建立了它们两者的关联关系。这里我们不具体分析它们建立关联的时机与方式,感兴趣的同学可以参考相关源码。下面我们直入主题,分析一下ViewRoot是如何完成View的绘制的。

View绘制的起点

当建立好了decorView与ViewRoot的关联后,ViewRoot类的requestLayout()方法会被调用,以完成应用程序用户界面的初次布局。实际被调用的是ViewRootImpl类的requestLayout()方法,这个方法的源码如下:

? 1 2 3 4 5 6 7 8 9 @Override public void requestLayout() {    if (!mHandlingLayoutInLayoutRequest) {      // 检查发起布局请求的线程是否为主线程       checkThread();      mLayoutRequested = true ;      scheduleTraversals();    } }

上面的方法中调用了scheduleTraversals()方法来调度一次完成的绘制流程,该方法会向主线程发送一个“遍历”消息,最终会导致ViewRootImpl的performTraversals()方法被调用。下面,我们以performTraversals()为起点,来分析View的整个绘制流程。

三个阶段

View的整个绘制流程可以分为以下三个阶段:

measure: 判断是否需要重新计算View的大小,需要的话则计算;layout: 判断是否需要重新计算View的位置,需要的话则计算;draw: 判断是否需要重新绘制View,需要的话则重绘制。 这三个子阶段可以用下图来描述:  

measure阶段

此阶段的目的是计算出控件树中的各个控件要显示其内容的话,需要多大尺寸。起点是ViewRootImpl的measureHierarchy()方法,这个方法的源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 private boolean measureHierarchy( final View host, final WindowManager.LayoutParams lp, final Resources res,      final int desiredWindowWidth, final int desiredWindowHeight) {    // 传入的desiredWindowXxx为窗口尺寸    int childWidthMeasureSpec;    int childHeightMeasureSpec;    boolean windowSizeMayChange = false ;    . . .    boolean goodMeasure = false ;      if (!goodMeasure) {      childWidthMeasureSpec = getRootMeasureSpec(desiredWindowWidth, lp.width);      childHeightMeasureSpec = getRootMeasureSpec(desiredWindowHeight, lp.height);      performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);        if (mWidth != host.getMeasuredWidth() || mHeight != host.getMeasuredHeight()) {        windowSizeMayChange = true ;      }    }    return windowSizeMayChange; }

上面的代码中调用getRootMeasureSpec()方法来获取根MeasureSpec,这个根MeasureSpec代表了对decorView的宽高的约束信息。继续分析之前,我们先来简单地介绍下MeasureSpec的概念。 MeasureSpec是一个32位整数,由SpecMode和SpecSize两部分组成,其中,高2位为SpecMode,低30位为SpecSize。SpecMode为测量模式,SpecSize为相应测量模式下的测量尺寸。View(包括普通View和ViewGroup)的SpecMode由本View的LayoutParams结合父View的MeasureSpec生成。 SpecMode的取值可为以下三种:

EXACTLY: 对子View提出了一个确切的建议尺寸(SpecSize);AT_MOST: 子View的大小不得超过SpecSize;UNSPECIFIED: 对子View的尺寸不作限制,通常用于系统内部。

传入performMeasure()方法的MeasureSpec的SpecMode为EXACTLY,SpecSize为窗口尺寸。 performMeasure()方法的源码如下:

? 1 2 3 4 5 6 7 8 private void performMeasure( int childWidthMeasureSpec, int childHeightMeasureSpec) {    . . .    try {      mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);    } finally {      . . .    } }

上面代码中的mView即为decorView,也就是说会转向对View.measure()方法的调用,这个方法的源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 /**   * 调用这个方法来算出一个View应该为多大。参数为父View对其宽高的约束信息。   * 实际的测量工作在onMeasure()方法中进行   */ public final void measure( int widthMeasureSpec, int heightMeasureSpec) {    . . .    // 判断是否需要重新布局      // 若mPrivateFlags中包含PFLAG_FORCE_LAYOUT标记,则强制重新布局    // 比如调用View.requestLayout()会在mPrivateFlags中加入此标记    final boolean forceLayout = (mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT;    final boolean specChanged = widthMeasureSpec != mOldWidthMeasureSpec        || heightMeasureSpec != mOldHeightMeasureSpec;    final boolean isSpecExactly = MeasureSpec.getMode(widthMeasureSpec) == MeasureSpec.EXACTLY        && MeasureSpec.getMode(heightMeasureSpec) == MeasureSpec.EXACTLY;    final boolean matchesSpecSize = getMeasuredWidth() == MeasureSpec.getSize(widthMeasureSpec)        && getMeasuredHeight() == MeasureSpec.getSize(heightMeasureSpec);    final boolean needsLayout = specChanged        && (sAlwaysRemeasureExactly || !isSpecExactly || !matchesSpecSize);      // 需要重新布局     if (forceLayout || needsLayout) {      . . .      // 先尝试从缓从中获取,若forceLayout为true或是缓存中不存在或是      // 忽略缓存,则调用onMeasure()重新进行测量工作      int cacheIndex = forceLayout ? - 1 : mMeasureCache.indexOfKey(key);      if (cacheIndex < 0 || sIgnoreMeasureCache) {        // measure ourselves, this should set the measured dimension flag back        onMeasure(widthMeasureSpec, heightMeasureSpec);        . . .      } else {        // 缓存命中,直接从缓存中取值即可,不必再测量        long value = mMeasureCache.valueAt(cacheIndex);        // Casting a long to int drops the high 32 bits, no mask needed        setMeasuredDimensionRaw(( int ) (value >> 32 ), ( int ) value);        . . .      }      . . .    }    mOldWidthMeasureSpec = widthMeasureSpec;    mOldHeightMeasureSpec = heightMeasureSpec;    mMeasureCache.put(key, (( long ) mMeasuredWidth) << 32 |        ( long ) mMeasuredHeight & 0xffffffffL); // suppress sign extension }

从measure()方法的源码中我们可以知道,只有以下两种情况之一,才会进行实际的测量工作:

forceLayout为true:这表示强制重新布局,可以通过View.requestLayout()来实现;needsLayout为true,这需要specChanged为true(表示本次传入的MeasureSpec与上次传入的不同),并且以下三个条件之一成立: sAlwaysRemeasureExactly为true: 该变量默认为false;isSpecExactly为false: 若父View对子View提出了精确的宽高约束,则该变量为true,否则为falsematchesSpecSize为false: 表示父View的宽高尺寸要求与上次测量的结果不同

对于decorView来说,实际执行测量工作的是FrameLayout的onMeasure()方法,该方法的源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 @Override protected void onMeasure( int widthMeasureSpec, int heightMeasureSpec) {    int count = getChildCount();    . . .    int maxHeight = 0 ;    int maxWidth = 0 ;      int childState = 0 ;    for ( int i = 0 ; i < count; i++) {      final View child = getChildAt(i);      if (mMeasureAllChildren || child.getVisibility() != GONE) {        measureChildWithMargins(child, widthMeasureSpec, 0 , heightMeasureSpec, 0 );        final LayoutParams lp = (LayoutParams) child.getLayoutParams();        maxWidth = Math.max(maxWidth,            child.getMeasuredWidth() + lp.leftMargin + lp.rightMargin);        maxHeight = Math.max(maxHeight,            child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin);        childState = combineMeasuredStates(childState, child.getMeasuredState());          . . .      }    }      // Account for padding too    maxWidth += getPaddingLeftWithForeground() + getPaddingRightWithForeground();    maxHeight += getPaddingTopWithForeground() + getPaddingBottomWithForeground();      // Check against our minimum height and width    maxHeight = Math.max(maxHeight, getSuggestedMinimumHeight());    maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());      // Check against our foreground's minimum height and width    final Drawable drawable = getForeground();    if (drawable != null ) {      maxHeight = Math.max(maxHeight, drawable.getMinimumHeight());      maxWidth = Math.max(maxWidth, drawable.getMinimumWidth());    }      setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),          resolveSizeAndState(maxHeight, heightMeasureSpec,          childState << MEASURED_HEIGHT_STATE_SHIFT));    . . . }

FrameLayout是ViewGroup的子类,后者有一个View[]类型的成员变量mChildren,代表了其子View集合。通过getChildAt(i)能获取指定索引处的子View,通过getChildCount()可以获得子View的总数。

在上面的源码中,首先调用measureChildWithMargins()方法对所有子View进行了一遍测量,并计算出所有子View的最大宽度和最大高度。而后将得到的最大高度和宽度加上padding,这里的padding包括了父View的padding和前景区域的padding。然后会检查是否设置了最小宽高,并与其比较,将两者中较大的设为最终的最大宽高。最后,若设置了前景图像,我们还要检查前景图像的最小宽高。

经过了以上一系列步骤后,我们就得到了maxHeight和maxWidth的最终值,表示当前容器View用这个尺寸就能够正常显示其所有子View(同时考虑了padding和margin)。而后我们需要调用resolveSizeAndState()方法来结合传来的MeasureSpec来获取最终的测量宽高,并保存到mMeasuredWidth与mMeasuredHeight成员变量中。

从以上代码的执行流程中,我们可以看到,容器View通过measureChildWithMargins()方法对所有子View进行测量后,才能得到自身的测量结果。也就是说,对于ViewGroup及其子类来说,要先完成子View的测量,再进行自身的测量(考虑进padding等)。 接下来我们来看下ViewGroup的measureChildWithMargins()方法的实现:

? 1 2 3 4 5 6 7 8 9 10 11 12 protected void measureChildWithMargins(View child,    int parentWidthMeasureSpec, int widthUsed,    int parentHeightMeasureSpec, int heightUsed) {    final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();    final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,        mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin + widthUsed, lp.width);    final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec        mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin + heightUsed, lp.height);      child.measure(childWidthMeasureSpec, childHeightMeasureSpec);   }

由以上代码我们可以知道,对于ViewGroup来说,它会调用child.measure()来完成子View的测量。传入ViewGroup的MeasureSpec是它的父View用于约束其测量的,那么ViewGroup本身也需要生成一个childMeasureSpec来限制它的子View的测量工作。这个childMeasureSpec就由getChildMeasureSpec()方法生成。接下来我们来分析这个方法:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 public static int getChildMeasureSpec( int spec, int padding, int childDimension) {    // spec为父View的MeasureSpec    // padding为父View在相应方向的已用尺寸加上父View的padding和子View的margin    // childDimension为子View的LayoutParams的值    int specMode = MeasureSpec.getMode(spec);    int specSize = MeasureSpec.getSize(spec);      // 现在size的值为父View相应方向上的可用大小    int size = Math.max( 0 , specSize - padding);      int resultSize = 0 ;    int resultMode = 0 ;      switch (specMode) {      // Parent has imposed an exact size on us      case MeasureSpec.EXACTLY:        if (childDimension >= 0 ) {          // 表示子View的LayoutParams指定了具体大小值(xx dp)          resultSize = childDimension;          resultMode = MeasureSpec.EXACTLY;        } else if (childDimension == LayoutParams.MATCH_PARENT) {          // 子View想和父View一样大          resultSize = size;          resultMode = MeasureSpec.EXACTLY;        } else if (childDimension == LayoutParams.WRAP_CONTENT) {          // 子View想自己决定其尺寸,但不能比父View大          resultSize = size;          resultMode = MeasureSpec.AT_MOST;        }        break ;        // Parent has imposed a maximum size on us      case MeasureSpec.AT_MOST:        if (childDimension >= 0 ) {          // 子View指定了具体大小          resultSize = childDimension;          resultMode = MeasureSpec.EXACTLY;        } else if (childDimension == LayoutParams.MATCH_PARENT) {          // 子View想跟父View一样大,但是父View的大小未固定下来          // 所以指定约束子View不能比父View大          resultSize = size;          resultMode = MeasureSpec.AT_MOST;        } else if (childDimension == LayoutParams.WRAP_CONTENT) {          // 子View想要自己决定尺寸,但不能比父View大          resultSize = size;          resultMode = MeasureSpec.AT_MOST;        }        break ;          . . .    }      //noinspection ResourceType    return MeasureSpec.makeMeasureSpec(resultSize, resultMode); }

上面的方法展现了根据父View的MeasureSpec和子View的LayoutParams生成子View的MeasureSpec的过程, 子View的LayoutParams表示了子View的期待大小。这个产生的MeasureSpec用于指导子View自身的测量结果的确定。 在上面的代码中,我们可以看到当ParentMeasureSpec的SpecMode为EXACTLY时,表示父View对子View指定了确切的宽高限制。此时根据子View的LayoutParams的不同,分以下三种情况:

具体大小(childDimension):这种情况下令子View的SpecSize为childDimension,即子View在LayoutParams指定的具体大小值;令子View的SpecMode为EXACTLY,即这种情况下若该子View为容器View,它也有能力给其子View指定确切的宽高限制(子View只能在这个宽高范围内),若为普通View,它的最终测量大小就为childDimension。match_parent:此时表示子View想和父View一样大。这种情况下得到的子View的SpecMode与上种情况相同,只不过SpecSize为size,即父View的剩余可用大小。wrap_content: 这表示了子View想自己决定自己的尺寸(根据其内容的大小动态决定)。这种情况下子View的确切测量大小只能在其本身的onMeasure()方法中计算得出,父View此时无从知晓。所以暂时将子View的SpecSize设为size(父View的剩余大小);令子View的SpecMode为AT_MOST,表示了若子View为ViewGroup,它没有能力给其子View指定确切的宽高限制,毕竟它本身的测量宽高还悬而未定。

当ParentMeasureSpec的SpecMode为AT_MOST时,我们也可以根据子View的LayoutParams的不同来分三种情况讨论:

具体大小:这时令子View的SpecSize为childDimension,SpecMode为EXACTLY。match_parent:表示子View想和父View一样大,故令子View的SpecSize为size,但是由于父View本身的测量宽高还无从确定,所以只是暂时令子View的测量结果为父View目前的可用大小。这时令子View的SpecMode为AT_MOST。wrap_content:表示子View想自己决定大小(根据其内容动态确定)。然而这时父View还无法确定其自身的测量宽高,所以暂时令子View的SpecSize为size,SpecMode为AT_MOST。 从上面的分析我们可以得到一个通用的结论,当子View的测量结果能够确定时,子View的SpecMode就为EXACTLY;当子View的测量结果还不能确定(只是暂时设为某个值)时,子View的SpecMode为AT_MOST。

在measureChildWithMargins()方法中,获取了知道子View测量的MeasureSpec后,接下来就要调用child.measure()方法,并把获取到的childMeasureSpec传入。这时便又会调用onMeasure()方法,若此时的子View为ViewGroup的子类,便会调用相应容器类的onMeasure()方法,其他容器View的onMeasure()方法与FrameLayout的onMeasure()方法执行过程相似。

下面会我们回到FrameLayout的onMeasure()方法,当递归地执行完所有子View的测量工作后,会调用resolveSizeAndState()方法来根据之前的测量结果确定最终对FrameLayout的测量结果并存储起来。View类的resolveSizeAndState()方法的源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 public static int resolveSizeAndState( int size, int measureSpec, int childMeasuredState) {    final int specMode = MeasureSpec.getMode(measureSpec);    final int specSize = MeasureSpec.getSize(measureSpec);    final int result;    switch (specMode) {      case MeasureSpec.AT_MOST:        if (specSize < size) {          // 父View给定的最大尺寸小于完全显示内容所需尺寸          // 则在测量结果上加上MEASURED_STATE_TOO_SMALL          result = specSize | MEASURED_STATE_TOO_SMALL;        } else {         result = size;        }        break ;        case MeasureSpec.EXACTLY:        // 若specMode为EXACTLY,则不考虑size,result直接赋值为specSize        result = specSize;        break ;        case MeasureSpec.UNSPECIFIED:      default :        result = size;    }      return result | (childMeasuredState & MEASURED_STATE_MASK);   }

对于普通View,会调用View类的onMeasure()方法来进行实际的测量工作,该方法的源码如下:

? 1 2 3 4 protected void onMeasure( int widthMeasureSpec, int heightMeasureSpec) {      setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),          getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec)); }

对于普通View(非ViewgGroup)来说,只需完成自身的测量工作即可。以上代码中通过setMeasuredDimension()方法设置测量的结果,具体来说是以getDefaultSize()方法的返回值来作为测量结果。getDefaultSize()方法的源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 public static int getDefaultSize( int size, int measureSpec) {    int result = size;    int specMode = MeasureSpec.getMode(measureSpec);    int specSize = MeasureSpec.getSize(measureSpec);    switch (specMode) {      case MeasureSpec.UNSPECIFIED:        result = size;        break ;      case MeasureSpec.AT_MOST:      case MeasureSpec.EXACTLY:        result = specSize;        break ;    }    return result; }

由以上代码我们可以看到,View的getDefaultSize()方法对于AT_MOST和EXACTLY这两种情况都返回了SpecSize作为result。所以若我们的自定义View直接继承了View类,我们就要自己对wrap_content (对应了AT_MOST)这种情况进行处理,否则对自定义View指定wrap_content就和match_parent效果一样了。

layout阶段

layout阶段的基本思想也是由根View开始,递归地完成整个控件树的布局(layout)工作。

View.layout()

我们把对decorView的layout()方法的调用作为布局整个控件树的起点,实际上调用的是View类的layout()方法,源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 public void layout( int l, int t, int r, int b) {      // l为本View左边缘与父View左边缘的距离      // t为本View上边缘与父View上边缘的距离      // r为本View右边缘与父View左边缘的距离      // b为本View下边缘与父View上边缘的距离      . . .      boolean changed = isLayoutModeOptical(mParent) ?            setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);      if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {          onLayout(changed, l, t, r, b);          . . .        }      . . . }

这个方法会调用setFrame()方法来设置View的mLeft、mTop、mRight和mBottom四个参数,这四个参数描述了View相对其父View的位置(分别赋值为l, t, r, b),在setFrame()方法中会判断View的位置是否发生了改变,若发生了改变,则需要对子View进行重新布局,对子View的局部是通过onLayout()方法实现了。由于普通View( 非ViewGroup)不含子View,所以View类的onLayout()方法为空。因此接下来,我们看看ViewGroup类的onLayout()方法的实现。

ViewGroup.onLayout()

实际上ViewGroup类的onLayout()方法是abstract,这是因为不同的布局管理器有着不同的布局方式。 这里我们以decorView,也就是FrameLayout的onLayout()方法为例,分析ViewGroup的布局过程:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 @Override protected void onLayout( boolean changed, int left, int top, int right, int bottom) {    layoutChildren(left, top, right, bottom, false /* no force left gravity */ ); }   void layoutChildren( int left, int top, int right, int bottom, boolean forceLeftGravity) {    final int count = getChildCount();    final int parentLeft = getPaddingLeftWithForeground();    final int parentRight = right - left - getPaddingRightWithForeground();    final int parentTop = getPaddingTopWithForeground();    final int parentBottom = bottom - top - getPaddingBottomWithForeground();      for ( int i = 0 ; i < count; i++) {      final View child = getChildAt(i);      if (child.getVisibility() != GONE) {        final LayoutParams lp = (LayoutParams) child.getLayoutParams();        final int width = child.getMeasuredWidth();        final int height = child.getMeasuredHeight();        int childLeft;        int childTop;        int gravity = lp.gravity;          if (gravity == - 1 ) {          gravity = DEFAULT_CHILD_GRAVITY;        }          final int layoutDirection = getLayoutDirection();        final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);        final int verticalGravity = gravity & Gravity.VERTICAL_GRAVITY_MASK;          switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {          case Gravity.CENTER_HORIZONTAL:            childLeft = parentLeft + (parentRight - parentLeft - width) / 2 + lp.leftMargin - lp.rightMargin;            break ;            case Gravity.RIGHT:            if (!forceLeftGravity) {              childLeft = parentRight - width - lp.rightMargin;              break ;            }            case Gravity.LEFT:          default :            childLeft = parentLeft + lp.leftMargin;          }          switch (verticalGravity) {          case Gravity.TOP:            childTop = parentTop + lp.topMargin;            break ;            case Gravity.CENTER_VERTICAL:            childTop = parentTop + (parentBottom - parentTop - height) / 2 + lp.topMargin - lp.bottomMargin;            break ;            case Gravity.BOTTOM:            childTop = parentBottom - height - lp.bottomMargin;            break ;            default :            childTop = parentTop + lp.topMargin;        }        child.layout(childLeft, childTop, childLeft + width, childTop + height);      }    } }

在上面的方法中,parentLeft表示当前View为其子View显示区域指定的一个左边界,也就是子View显示区域的左边缘到父View的左边缘的距离,parentRight、parentTop、parentBottom的含义同理。确定了子View的显示区域后,接下来,用一个for循环来完成子View的布局。 在确保子View的可见性不为GONE的情况下才会对其进行布局。首先会获取子View的LayoutParams、layoutDirection等一系列参数。上面代码中的childLeft代表了最终子View的左边缘距父View左边缘的距离,childTop代表了子View的上边缘距父View的上边缘的距离。会根据子View的layout_gravity的取值对childLeft和childTop做出不同的调整。最后会调用child.layout()方法对子View的位置参数进行设置,这时便转到了View.layout()方法的调用,若子View是容器View,则会递归地对其子View进行布局。

到这里,layout阶段的大致流程我们就分析完了,这个阶段主要就是根据上一阶段得到的View的测量宽高来确定View的最终显示位置。显然,经过了measure阶段和layout阶段,我们已经确定好了View的大小和位置,那么接下来就可以开始绘制View了。

draw阶段

对于本阶段的分析,我们以decorView.draw()作为分析的起点,也就是View.draw()方法,它的源码如下:

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 public void draw(Canvas canvas) {    . . .    // 绘制背景,只有dirtyOpaque为false时才进行绘制,下同    int saveCount;    if (!dirtyOpaque) {      drawBackground(canvas);    }      . . .      // 绘制自身内容    if (!dirtyOpaque) onDraw(canvas);      // 绘制子View    dispatchDraw(canvas);       . . .    // 绘制滚动条等    onDrawForeground(canvas);   }

简单起见,在上面的代码中我们省略了实现滑动时渐变边框效果相关的逻辑。实际上,View类的onDraw()方法为空,因为每个View绘制自身的方式都不尽相同,对于decorView来说,由于它是容器View,所以它本身并没有什么要绘制的。dispatchDraw()方法用于绘制子View,显然普通View(非ViewGroup)并不能包含子View,所以View类中这个方法的实现为空。

ViewGroup类的dispatchDraw()方法中会依次调用drawChild()方法来绘制子View,drawChild()方法的源码如下:

? 1 2 3 protected boolean drawChild(Canvas canvas, View child, long drawingTime) {    return child.draw(canvas, this , drawingTime); }

这个方法调用了View.draw(Canvas, ViewGroup,long)方法来对子View进行绘制。在draw(Canvas, ViewGroup, long)方法中,首先对canvas进行了一系列变换,以变换到将要被绘制的View的坐标系下。完成对canvas的变换后,便会调用View.draw(Canvas)方法进行实际的绘制工作,此时传入的canvas为经过变换的,在将被绘制View的坐标系下的canvas。

进入到View.draw(Canvas)方法后,会向之前介绍的一样,执行以下几步:

绘制背景;通过onDraw()绘制自身内容;通过dispatchDraw()绘制子View;绘制滚动条

至此,整个View的绘制流程我们就分析完了。若文中有叙述不清晰或是不准确的地方,希望大家能够指出,谢谢大家:)

 

这篇讲解View的绘制比较全面,解决了很多疑惑,如果想仔细研究View的measure()、layout()、draw(),可以看这篇:http://www.cnblogs.com/jycboy/p/6066654.html。这两篇看完就会对view的绘制流程很清楚了。

转载请注明原文地址: https://www.6miu.com/read-63934.html

最新回复(0)