python图像处理——图像绘制

xiaoxiao2021-02-27  294

前面我们已经用到啦图像绘制, io.imshow(img) 这行代码实质是利用matplot包对图片进行绘制,绘制成功后,返回一个matplotlib类型数据。 imshow()格式为 matplotlib.pyplot.imshow(X, cmap=None) X:要绘制的图像或者数组 cmap:颜色图谱,默认绘制为RGB颜色空间 其他颜色图谱: 颜色图谱 描述 autumn 红-橙-黄 bone 黑-白,x线 cool 青-洋红 copper 黑-铜 flag 红-白-蓝-黑 gray 黑-白 hot 黑-红-黄-白 hsv hsv颜色空间, 红-黄-绿-青-蓝-洋红-红 inferno 黑-红-黄 jet 蓝-青-黄-红 magma 黑-红-白 pink 黑-粉-白 plasma 绿-红-黄 prism 红-黄-绿-蓝-紫-…-绿模式 spring 洋红-黄 summer 绿-黄 viridis 蓝-绿-黄 winter 蓝-绿

在窗口上绘制完图片后,返回一个AxesImage对象。要在窗口上显示这个对象,我们可以调用show()函数来进行显示,但进行练习的时候(ipython环境中),一般我们可以省略show()函数,也能自动显示出来。 from skimage import io,data img=data.astronaut() dst=io.imshow(img) print(type(dst)) io.show() matplotlib是一个专业绘图的库,相当于matlab中的plot,可以设置多个figure窗口,设置figure的标题,隐藏坐标尺,甚至可以使用subplot在一个figure中显示多张图片。一般我们可以这样导入matplotlib库: import matplotlib.pyplot as plt

一、用figure函数和subplot函数分别创建主窗口和子图

from skimage import data import matplotlib.pyplot as plt img=data.astronaut() plt.figure(num='astronaut',figsize=(8,8)) #创建一个名为astronaut的窗口,并设置大小 plt.subplot(2,2,1) #将窗口分为两行两列四个子图,则可显示四幅图片 plt.title('origin image') #第一幅图片标题 plt.imshow(img) #绘制第一幅图片 plt.subplot(2,2,2) #第二个子图 plt.title('R channel') #第二幅图片标题 plt.imshow(img[:,:,0],plt.cm.gray) #绘制第二幅图片,且为灰度图 plt.axis('off') #不显示坐标尺寸 plt.subplot(2,2,3) #第三个子图 plt.title('G channel') #第三幅图片标题 plt.imshow(img[:,:,1],plt.cm.gray) #绘制第三幅图片,且为灰度图 plt.axis('off') #不显示坐标尺寸 plt.subplot(2,2,4) #第四个子图 plt.title('B channel') #第四幅图片标题 plt.imshow(img[:,:,2],plt.cm.gray) #绘制第四幅图片,且为灰度图 plt.axis('off') #不显示坐标尺寸 plt.show() #显示窗口 在图片绘制过程中,我们用matplotlib.pyplot模块下的figure()函数来创建窗口,函数格式为: matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None) 所有参数都是可选的,都有默认值,因此调用该函数时可以不带任何参数,其中:

num: 整型或字符型都可以。如果设置为整型,则该整型数字表示窗口的序号。如果设置为字符型,则该字符串表示窗口的名称。用该参数来命名窗口,如果两个窗口序号或名相同,则后一个窗口会覆盖前一个窗口。

figsize: 设置窗口大小。是一个tuple型的整数,如figsize=(8,8)

dpi: 整形数字,表示窗口的分辨率。

facecolor: 窗口的背景颜色。

edgecolor: 窗口的边框颜色。

用figure()函数创建的窗口,只能显示一幅图片,如果想要显示多幅图片,则需要将这个窗口再划分为几个子图,在每个子图中显示不同的图片。我们可以使用subplot()函数来划分子图,函数格式为:

matplotlib.pyplot.subplot(nrows, ncols, plot_number) nrows: 子图的行数。 ncols: 子图的列数。 plot_number: 当前子图的编号。

二、用subplots来显示窗口与划分子图

import matplotlib.pyplot as plt from skimage import data,color img = data.immunohistochemistry() hsv = color.rgb2hsv(img) fig, axes = plt.subplots(2, 2, figsize=(7, 6)) ax0, ax1, ax2, ax3 = axes.ravel() ax0.imshow(img) ax0.set_title("Original image") ax1.imshow(hsv[:, :, 0], cmap=plt.cm.gray) ax1.set_title("H") ax2.imshow(hsv[:, :, 1], cmap=plt.cm.gray) ax2.set_title("S") ax3.imshow(hsv[:, :, 2], cmap=plt.cm.gray) ax3.set_title("V") for ax in axes.ravel(): ax.axis('off') fig.tight_layout() #自动调整subplot间的参数

直接用subplots()函数来创建并划分窗口。注意,比前面的subplot()函数多了一个s,该函数格式为:

matplotlib.pyplot.subplots(nrows=1, ncols=1)

nrows: 所有子图行数,默认为1。

ncols: 所有子图列数,默认为1。

返回一个窗口figure, 和一个tuple型的ax对象,该对象包含所有的子图,可结合ravel()函数列出所有子图,如:

fig,axes = plt.subplots(2,2,figsize=(7,6)) zx0,zx1,zx2,zx3 =axes.ravel()

创建来2行2列4个子图,分别取名ax0,ax1,ax2,ax3,每个子图标题用set_title()函数来设置,如:

ax0.imshow(img) ax0.set_title("Ori")

如果有多个子图,我们还可以使用tight_layout()函数来调整显示的布局,该函数格式为:

matplotlib.pyplot.tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None)

所有的参数都是可选的,调用该函数时可省略所有的参数。

pad: 主窗口边缘和子图边缘间的间距,默认为1.08

h_pad, w_pad: 子图边缘之间的间距,默认为 pad_inches

rect: 一个矩形区域,如果设置这个值,则将所有的子图调整到这个矩形区域内。 一般调用为:

plt.tight_layout() #自动调整subplot间参数
转载请注明原文地址: https://www.6miu.com/read-6206.html

最新回复(0)