numpy中random的详解

xiaoxiao2021-02-28  89

随机抽样 (numpy.random)

简单的随机数据

rand(d0, d1, ..., dn)

随机值

>>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random

randn(d0, d1, ..., dn)

返回一个样本,具有标准正态分布。

Notes

For random samples from , use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn() 2.1923875335537315 #random

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3 array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random

randint(low[, high, size])

返回随机的整数,位于半开区间 [low, high)。

>>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]])

random_integers(low[, high, size])

返回随机的整数,位于闭区间 [low, high]。

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5) 4 >>> type(np.random.random_integers(5)) <type int> >>> np.random.random_integers(5, size=(3.,2.)) array([[5, 4], [3, 3], [4, 5]])

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from the set ):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4. array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ])

Roll two six sided dice 1000 times and sum the results:

>>> d1 = np.random.random_integers(1, 6, 1000) >>> d2 = np.random.random_integers(1, 6, 1000) >>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(dsums, 11, normed=True) >>> plt.show()

 

random_sample([size])

返回随机的浮点数,在半开区间 [0.0, 1.0)。

To sample  multiply the output ofrandom_sample by (b-a) and add a:

(b - a) * random_sample() + a

Examples

>>> np.random.random_sample() 0.47108547995356098 >>> type(np.random.random_sample()) <type float> >>> np.random.random_sample((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]])

 

random([size])

返回随机的浮点数,在半开区间 [0.0, 1.0)。

(官网例子与random_sample完全一样)

ranf([size])

返回随机的浮点数,在半开区间 [0.0, 1.0)。

(官网例子与random_sample完全一样)

sample([size])

返回随机的浮点数,在半开区间 [0.0, 1.0)。

(官网例子与random_sample完全一样)

choice(a[, size, replace, p])

生成一个随机样本,从一个给定的一维数组

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3) array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False) array([3,1,0]) >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = [pooh, rabbit, piglet, Christopher] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array([pooh, pooh, pooh, Christopher, piglet], dtype=|S11)

 

bytes(length)

返回随机字节。

>>> np.random.bytes(10) eh\x85\x022SZ\xbf\xa4 #random

 

排列

shuffle(x)

现场修改序列,改变自身内容。(类似洗牌,打乱顺序)

>>> arr = np.arange(10) >>> np.random.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8]

 

This function only shuffles the array along the first index of a multi-dimensional array:

>>> arr = np.arange(9).reshape((3, 3)) >>> np.random.shuffle(arr) >>> arr array([[3, 4, 5], [6, 7, 8], [0, 1, 2]])

 

permutation(x)

返回一个随机排列

>>> np.random.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) >>> np.random.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.permutation(arr) array([[6, 7, 8], [0, 1, 2], [3, 4, 5]])

 

分布

beta(a, b[, size])

贝塔分布样本,在 [0, 1]内。

binomial(n, p[, size])

二项分布的样本。

chisquare(df[, size])

卡方分布样本。

dirichlet(alpha[, size])

狄利克雷分布样本。

exponential([scale, size])

指数分布

f(dfnum, dfden[, size])

F分布样本。

gamma(shape[, scale, size])

伽马分布

geometric(p[, size])

几何分布

gumbel([loc, scale, size])

耿贝尔分布。

hypergeometric(ngood, nbad, nsample[, size])

超几何分布样本。

laplace([loc, scale, size])

拉普拉斯或双指数分布样本

logistic([loc, scale, size])

Logistic分布样本

lognormal([mean, sigma, size])

对数正态分布

logseries(p[, size])

对数级数分布。

multinomial(n, pvals[, size])

多项分布

multivariate_normal(mean, cov[, size])

多元正态分布。

>>> mean = [0,0] >>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis >>> import matplotlib.pyplot as plt >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, x); plt.axis(equal); plt.show()

 

negative_binomial(n, p[, size])

负二项分布

noncentral_chisquare(df, nonc[, size])

非中心卡方分布

noncentral_f(dfnum, dfden, nonc[, size])

非中心F分布

normal([loc, scale, size])

正态(高斯)分布

Notes

The probability density for the Gaussian distribution is

where  is the mean and  the standard deviation. The square of the standard deviation, , is called the variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches 0.607 times its maximum at  and [R217]).

 

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> abs(mu - np.mean(s)) < 0.01 True >>> abs(sigma - np.std(s, ddof=1)) < 0.01 True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, normed=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color=r) >>> plt.show()

 

pareto(a[, size])

帕累托(Lomax)分布

poisson([lam, size])

泊松分布

power(a[, size])

Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

rayleigh([scale, size])

Rayleigh 分布

standard_cauchy([size])

标准柯西分布

standard_exponential([size])

标准的指数分布

standard_gamma(shape[, size])

标准伽马分布

standard_normal([size])

标准正态分布 (mean=0, stdev=1).

standard_t(df[, size])

Standard Student’s t distribution with df degrees of freedom.

triangular(left, mode, right[, size])

三角形分布

uniform([low, high, size])

均匀分布

vonmises(mu, kappa[, size])

von Mises分布

wald(mean, scale[, size])

瓦尔德(逆高斯)分布

weibull(a[, size])

Weibull 分布

zipf(a[, size])

齐普夫分布

随机数生成器

RandomState

Container for the Mersenne Twister pseudo-random number generator.

seed([seed])

Seed the generator.

get_state()

Return a tuple representing the internal state of the generator.

set_state(state)

Set the internal state of the generator from a tuple.

随机数生成器

RandomState

Container for the Mersenne Twister pseudo-random number generator.

seed([seed])

Seed the generator.

get_state()

Return a tuple representing the internal state of the generator.

set_state(state)

Set the internal state of the generator from a tuple. 这篇
转载请注明原文地址: https://www.6miu.com/read-59640.html

最新回复(0)