Max sum HUD1003(dp)

xiaoxiao2021-02-28  112

Max Sum

Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.   Input The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).   Output For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.   Sample Input 2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5   Sample Output Case 1: 14 1 4 Case 2: 7 1 6  

题目简单,基础的dp,难点在于记录子序列的开始和结束位置;

#include <stdio.h> #include <string.h> #include <stdlib.h> #include <iostream> #include <algorithm> using namespace std; struct DP{ int s, e, val;//s:起点;e:终点;val:子串的和; }dp[100005]; int a[100005]; int main(){ int T; scanf("%d", &T); int cnt=0; while(T--){ cnt++; int n; scanf("%d",&n); for(int i=1; i<=n; i++){ scanf("%d",&a[i]); dp[i].val=a[i]; //初始化和,每个元素都是一个子串; dp[i].e=i; //初始化终点为i; } int s, e, maxx, k; maxx=dp[1].val; k=1; dp[1].s=1; dp[1].e=1; for(int i=2; i<=n; i++)//dp[i]=max(dp[i-1]+a[i], a[i]); { if(dp[i-1].val+a[i] >=a[i]){ dp[i].val=dp[i-1].val+a[i]; dp[i].s=dp[i-1].s; } else{ dp[i].val=a[i]; dp[i].s=i; } if(maxx<dp[i].val){ maxx=dp[i].val; k=i; } } printf("Case %d:\n",cnt); printf("%d %d %d\n",maxx,dp[k].s,dp[k].e); if(T!=0) printf("\n"); } return 0; }

转载请注明原文地址: https://www.6miu.com/read-59434.html

最新回复(0)