HDU 3280 Equal Sum Partitions(区间DP)【模板】

xiaoxiao2021-02-28  81

An  equal sum partition of a sequence of numbers is a grouping of the numbers (in the same order as the original sequence) in such a way that each group has the same sum. For example, the sequence:  2 5 1 3 3 7  may be grouped as:  (2 5) (1 3 3) (7)  to yield an equal sum of  7.  Note: The partition that puts all the numbers in a single group is an equal sum partition with the sum equal to the sum of all the numbers in the sequence.  For this problem, you will write a program that takes as input a sequence of positive integers and returns the smallest sum for an equal sum partition of the sequence. Input The first line of input contains a single integer  P, (1 ≤  P ≤ 1000), which is the number of data sets that follow. The first line of each data set contains the data set number, followed by a space, followed by a decimal integer  M, (1 ≤  M ≤ 10000), giving the total number of integers in the sequence. The remaining line(s) in the dataset consist of the values, 10 per line, separated by a single space. The last line in the dataset may contain less than 10 values. Output For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the smallest sum for an equal sum partition of the sequence. Sample Input 3 1 6 2 5 1 3 3 7 2 6 1 2 3 4 5 6 3 20 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 Sample Output 1 7 2 21 3 2

 【题解】 区间DP,题意很清楚,就是求把一个序列分成若干段,每段的和尽可能相等并且要小。

  做法就是记忆搜索每个区间,相等的判小,重置为更小的那个。具体看代码。

 【AC代码】

 

#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> using namespace std; int m,n,a[12000]; int sum[10005]; int dp[10001][10001]; int main() { int t; scanf("%d",&t); while(t--) { sum[0]=0; scanf("%d%d",&m,&n); for(int i=1;i<=n;++i) { scanf("%d",&a[i]); sum[i]=sum[i-1]+a[i]; } for(int i=0;i<n;++i) { for(int j=1;j<=n-i;++j) { int k=j+i; dp[j][k]=sum[k]-sum[j-1]; for(int l=j;l<k;++l) { if(dp[l+1][k]==sum[l]-sum[j-1]) dp[j][k]=min(dp[j][k],dp[l+1][k]); if(dp[j][l]==sum[k]-sum[l]) dp[j][k]=min(dp[j][k],dp[j][l]); if(dp[j][l]==dp[l+1][k]) dp[j][k] = min(dp[j][k],dp[j][l]); } } } printf("%d %d\n",m,dp[1][n]); } return 0; }

转载请注明原文地址: https://www.6miu.com/read-58732.html

最新回复(0)