hdu5972

xiaoxiao2021-02-28  103

Regular Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 789    Accepted Submission(s): 181 Problem Description Using regular expression to define a numeric string is a very common thing. Generally, use the shape as follows: (0|9|7) (5|6) (2) (4|5) Above regular expression matches 4 digits:The first is one of 0,9 and 7. The second is one of 5 and 6. The third is 2. And the fourth is one of 4 and 5. The above regular expression can be successfully matched to 0525, but it cannot be matched to 9634. Now,giving you a regular expression like the above formula,and a long string of numbers,please find out all the substrings of this long string that can be matched to the regular expression.   Input It contains a set of test data.The first line is a positive integer N (1 ≤ N ≤ 1000),on behalf of the regular representation of the N bit string.In the next N lines,the first integer of the i-th line is ai(1ai10) ,representing that the i-th position of regular expression has ai numbers to be selected.Next there are ai numeric characters. In the last line,there is a numeric string.The length of the string is not more than 5 * 10^6.   Output Output all substrings that can be matched by the regular expression. Each substring occupies one line   Sample Input 4 3 0 9 7 2 5 7 2 2 5 2 4 5 09755420524   Sample Output 9755 7554 0524

题意:

给你N位数,接下来有N行,第i行先输入n,表示这个数的第i 位上可以在接下来的n个数中挑选,然后i 行再输n个数。

然后输入需要匹配的母串,让你输出母串中有多少个可行的N位子串。

解:

这题首先没法使用KMP,因为在匹配失败后没法返回到准确的位置。

然后在网上向别人学了下代码,才明白这题bitset的巧妙的运用。

关于bitset的用法:http://blog.csdn.net/no2015214099/article/details/72902794

这题 bitset 的使用相当于是作为一个指针来使用的。

首先用bitset定义出现的数会在哪几位上出现,置为1。

定义ans的初始位为1,每一次母串对应位与该位出现的数的bitset进行与比较(表明该位上是否能出现该数)。因为一旦失败则置0,因此如果1出现在ans的第n位上则表明之前的n-1位全部匹配成功。

此题,使用bitset的复杂度为O(n*len/x)(len为母串长,x为机器码长)。

此题必须使用puts,gets进行输入输出,不然会超时。

代码:

#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cstdlib> #include <bitset> using namespace std; const int maxn=1e6+50; char str[5*maxn]; bitset<1005> s[20]; bitset<1005> ans; int main() { int n; while(~scanf("%d",&n)) { for(int i=0;i<20;i++) s[i].reset(); ans.reset(); for(int i=0;i<n;i++) { int N,temp; scanf("%d",&N); for(int j=0;j<N;j++) { scanf("%d",&temp); s[temp].set(i); } } getchar(); gets(str); int len=strlen(str); for(int i=0;i<len;i++) { ans=ans<<1; ans[0]=1; ans&=s[str[i]-'0']; if(ans[n-1]==1) { char temp=str[i+1]; str[i+1]='\0'; puts(str+i-n+1); str[i+1]=temp; } } } return 0; }

转载请注明原文地址: https://www.6miu.com/read-57719.html

最新回复(0)