线段树区间更新:
//
0 x y v: [
x,
y]内元素都加上v
//
1 x y: [
x,
y]内元素的和
typedef long long ll;
const
int N =
100010;
struct node
{
int l, r;
ll val, mark;
}
tr[N
*4];
int cas =
0;
void push_up(
int k)
{
tr[k].val =
tr[k<<
1].val +
tr[k<<
1|
1].val;
}
void push_down(
int k)
{
if(
tr[k].mark)
{
tr[k<<
1].mark +=
tr[k].mark,
tr[k<<
1|
1].mark +=
tr[k].mark;
tr[k<<
1].val += (
tr[k<<
1].r -
tr[k<<
1].l +
1) *
tr[k].mark;
tr[k<<
1|
1].val += (
tr[k<<
1|
1].r -
tr[k<<
1|
1].l +
1) *
tr[k].mark;
tr[k].mark =
0;
}
}
void build(
int l,
int r,
int k)
{
tr[k].l = l,
tr[k].r = r,
tr[k].mark =
0;
if(l == r)
{
tr[k].val =
0;
return;
}
int mid = (l + r) >>
1;
build(l, mid, k <<
1);
build(mid +
1, r, k <<
1|
1);
push_up(k);
}
void update(
int l,
int r,
int val,
int k)
{
if(l <=
tr[k].l &&
tr[k].r <= r)
{
tr[k].mark += val;
tr[k].val +=
1LL * (
tr[k].r -
tr[k].l +
1) * val;
return;
}
push_down(k);
int mid = (
tr[k].l +
tr[k].r) >>
1;
if(l <= mid) update(l, r, val, k <<
1);
if(r > mid) update(l, r, val, k <<
1|
1);
push_up(k);
}
ll query(
int l,
int r,
int k)
{
if(l <=
tr[k].l &&
tr[k].r <= r)
return tr[k].val;
push_down(k);
int mid = (
tr[k].l +
tr[k].r) >>
1;
ll res =
0;
if(l <= mid) res += query(l, r, k <<
1);
if(r > mid) res += query(l, r, k <<
1|
1);
return res;
}
int main()
{
int t, n,
m, a, b, c, d;
scanf(
"%d", &t);
while(t--)
{
scanf(
"%d%d", &n, &
m);
build(
1, n,
1);
printf(
"Case %d:\n", ++cas);
for(
int i =
0; i <
m; i++)
{
scanf(
"%d", &a);
if(a ==
0)
{
//下标从
0开始,故+
1
scanf(
"%d%d%d", &b, &c, &d);
update(b+
1, c+
1, d,
1);
}
else
{
scanf(
"%d%d", &b, &c);
printf(
"%lld\n", query(b+
1, c+
1,
1));
}
}
}
return 0;
}
线段树区间合并:
using namespace std;
//给定一个长度为n的
01串,接下来一个
m,有
m个操作,操作有两种:
0 a b查询区间内最长连续
1的长度,
1 a b反转区间内,
0变
1,
1变
0
const
int N =
100010;
struct node
{
int l, r;
int lone, lzero, rone, rzero, max1, max
0;
//分别维护左起
1,左起
0,右起
1,右起
0,区间中
1的最大长度,
0的最大长度
int len, mark;
//区间长度,lazy标记
}
tr[N
*4];
int val[N];
void push_up(
int k)
{
tr[k].lone =
tr[k<<
1].lone;
if(
tr[k<<
1].lone ==
tr[k<<
1].len)
tr[k].lone +=
tr[k<<
1|
1].lone;
//左子树左起
1的长度等于区间长度,那么直接加上右子树的左起
1长度
tr[k].lzero =
tr[k<<
1].lzero;
if(
tr[k<<
1].lzero ==
tr[k<<
1].len)
tr[k].lzero +=
tr[k<<
1|
1].lzero;
tr[k].rone =
tr[k<<
1|
1].rone;
if(
tr[k<<
1|
1].rone ==
tr[k<<
1|
1].len)
tr[k].rone +=
tr[k<<
1].rone;
tr[k].rzero =
tr[k<<
1|
1].rzero;
if(
tr[k<<
1|
1].rzero ==
tr[k<<
1|
1].len)
tr[k].rzero +=
tr[k<<
1].rzero;
tr[k].max1 = max(
tr[k<<
1].rone +
tr[k<<
1|
1].lone, max(
tr[k<<
1].max1,
tr[k<<
1|
1].max1));
tr[k].max
0 = max(
tr[k<<
1].rzero +
tr[k<<
1|
1].lzero, max(
tr[k<<
1].max
0,
tr[k<<
1|
1].max
0));
}
void push_down(
int k)
{
if(
tr[k].mark)//
0与
1互变,所以所有的维护信息也要互换
{
tr[k<<
1].mark ^=
tr[k].mark;
tr[k<<
1|
1].mark ^=
tr[k].mark;
swap(
tr[k<<
1].lone,
tr[k<<
1].lzero);
swap(
tr[k<<
1].rone,
tr[k<<
1].rzero);
swap(
tr[k<<
1].max1,
tr[k<<
1].max
0);
swap(
tr[k<<
1|
1].lone,
tr[k<<
1|
1].lzero);
swap(
tr[k<<
1|
1].rone,
tr[k<<
1|
1].rzero);
swap(
tr[k<<
1|
1].max1,
tr[k<<
1|
1].max
0);
tr[k].mark =
0;
}
}
void build(
int l,
int r,
int k)
{
tr[k].l = l,
tr[k].r = r,
tr[k].mark =
0,
tr[k].len = r - l +
1;
if(l == r)
{
if(val[l])
tr[k].lone =
tr[k].rone =
tr[k].max1 =
1,
tr[k].lzero =
tr[k].rzero =
tr[k].max
0 =
0;
else tr[k].lzero =
tr[k].rzero =
tr[k].max
0 =
1,
tr[k].lone =
tr[k].rone =
tr[k].max1 =
0;
return;
}
int mid = (
tr[k].l +
tr[k].r) >>
1;
build(l, mid, k <<
1);
build(mid +
1, r, k <<
1 |
1);
push_up(k);
}
void update(
int l,
int r,
int k)
{
if(l <=
tr[k].l &&
tr[k].r <= r)
{
tr[k].mark ^=
1;
swap(
tr[k].rone,
tr[k].rzero);
swap(
tr[k].lone,
tr[k].lzero);
swap(
tr[k].max1,
tr[k].max
0);
return;
}
push_down(k);
int mid = (
tr[k].l +
tr[k].r) >>
1;
if(l <= mid) update(l, r, k <<
1);
if(r > mid) update(l, r, k <<
1 |
1);
push_up(k);
}
int query(
int l,
int r,
int k)
{
if(l ==
tr[k].l &&
tr[k].r == r)
return tr[k].max1;
push_down(k);
int mid = (
tr[k].l +
tr[k].r) >>
1;
if(r <= mid)
return query(l, r, k <<
1);
//查询区间位于左子树
else if(l > mid)
return query(l, r, k <<
1 |
1);
//查询区间位于右子树
else //查询区间被分割
{
int left =
0, right =
0, midd =
0;
midd = min(mid - l +
1,
tr[k<<
1].rone) + min(r - mid,
tr[k<<
1|
1].lone);
left = query(l, mid, k <<
1);
right = query(mid +
1, r, k <<
1 |
1);
return max(midd, max(left, right));
}
}
int main()
{
int n,
m, a, b, c;
while(~ scanf(
"%d", &n))
{
for(
int i =
1; i <= n; i++)
scanf(
"%d", val + i);
build(
1, n,
1);
scanf(
"%d", &
m);
for(
int i =
0; i <
m; i++)
{
scanf(
"%d%d%d", &a, &b, &c);
if(a) update(b, c,
1);
else printf(
"%d\n", query(b, c,
1));
}
}
return 0;
}