动态规划:HDU1712-ACboy needs your help(分组背包问题)

xiaoxiao2021-02-28  80

ACboy needs your help

Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 4   Accepted Submission(s) : 1
Problem Description ACboy has N courses this term, and he plans to spend at most M days on study.Of course,the profit he will gain from different course depending on the days he spend on it.How to arrange the M days for the N courses to maximize the profit?   Input The input consists of multiple data sets. A data set starts with a line containing two positive integers N and M, N is the number of courses, M is the days ACboy has. Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j]. N = 0 and M = 0 ends the input.   Output For each data set, your program should output a line which contains the number of the max profit ACboy will gain.   Sample Input 2 2 1 2 1 3 2 2 2 1 2 1 2 3 3 2 1 3 2 1 0 0   Sample Output 3 4 6   解题心得: 1、这还是第一次看分组背包问题,分组背包问题的一个要求就是,在很多组中,每次只能从一个组中选取一个数,然后从多组中得到最优解。这就和0-1背包问题、多重背包和完全背包问题不同了。三种基础的背包问题(0-1、多重、完全)其实可以看成一个组,是单组之中随便选取,求最优解。所以在遇到多组背包问题的时候要能够区分的出来。 2、因为多组背包问题相对于三种基础的背包问题来说多了一个条件——组数。所以要加一层循环,组数。 公式 for 所有的组k for v = V...0 for 所有i组的k f[v]=max{f[v],f[v-c[i]]+w[i]} 要注意一点,三层循环之中容量必须放在第二层之中,否则就变成了0-1背包问题了 /* 之前在做这个题的时候看了一个人的博客,他把公式给写反了,v...V写到内层去了, 弄得一直WA,也是无语了,在这个博客里面纠正一下这个错误 */ #include<bits/stdc++.h> using namespace std; const int maxn = 1e5+100; const int maxn2 = 1e2+10; int maps[maxn2][maxn2]; int dp[maxn]; struct NUM { int va,cost; }num[maxn]; int main() { int n,m; while(scanf("%d%d",&n,&m) && n+m) { memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&maps[i][j]); for(int i=1;i<=n;i++) for(int j=m;j>=1;j--) for(int k=1;k<=j;k++) dp[j] = max(dp[j],dp[j-k]+maps[i][k]); printf("%d\n",dp[m]); } }
转载请注明原文地址: https://www.6miu.com/read-56007.html

最新回复(0)