HDU 4734:http://acm.hdu.edu.cn/showproblem.php?pid=4734
F(x)
Time Limit: 1000/500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 6341 Accepted Submission(s): 2438
Problem Description For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A). Input The first line has a number T (T <= 10000) , indicating the number of test cases. For each test case, there are two numbers A and B (0 <= A,B < 109) Output For every case,you should output "Case #t: " at first, without quotes. The t is the case number starting from 1. Then output the answer. Sample Input 3 0 100 1 10 5 100 Sample Output Case #1: 1 Case #2: 2 Case #3: 13 Source 2013 ACM/ICPC Asia Regional Chengdu Online Recommend liuyiding | We have carefully selected several similar problems for you: 6193 6192 6191 6190 6189【解析】:
关于数位dp详细的题解在 hdu2089的题解里:http://blog.csdn.net/winter2121/article/details/77725486
本篇是我做的第二个数位dp练习题。
这题有个坑一直卡着我。dfs的第二个参数sum。本题限制不超过f(A)。令upnum=f(A),
那我就可以用它来限制着dfs的递归,当递归过程的sum>upnum,就return,可是死活不能AC
然后看着网上的代码,改成给这个参数赋初值为upnum,然后递归时去减,减到<0就return,没想到就AC了。
大概是跟dp数组的记忆化有关。
【代码】:
#include <stdio.h> #include <string.h> #define mset(a,i) memset(a,i,sizeof(a)) int dp[26][15240];//dp[i][sum]表示第i位,和sum时的记忆。 int a[26]; int upnum; int dfs(int pos,int sum,bool limit) { if(sum<0)return 0; if(pos==-1)return sum>=0; if(!limit&&dp[pos][sum]!=-1)return dp[pos][sum]; int up=limit?a[pos]:9; int ans=0; for(int i=0;i<=up;i++) { ans+=dfs(pos-1,sum-i*(1<<pos),limit&&i==up); } if(!limit)dp[pos][sum]=ans; return ans; } int solve(int x) { int top=0; while(x) { a[top++]=x; x/=10; } return dfs(top-1,upnum,1); } int f(int A) { int ans=0; for(int j=0;A;j++,A/=10) ans+=(1<<j)*(A); return ans; } int main() { int T,A,B,r=1; scanf("%d",&T); memset(dp,-1,sizeof(dp)); while(T--) { scanf("%d%d",&A,&B); upnum=f(A); printf("Case #%d: %d\n",r++,solve(B)); } return 0; }