Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3 | | 1 --- 2 4Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.
Example 2:
0 4 | | 1 --- 2 --- 3Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.
Note: You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
题目要我们找到一个graph 里 互相连接的component 的个数
1、使用 adjacent list 来表示一个图2、遍历每个 节点 从1到N
3、DFS (深度优先搜索), 用一个boolean array 来记录访问的节点
public class Solution { public int countComponents(int n, int[][] edges) { if (n <= 1) return n; List<List<Integer>> adj_list = new ArrayList<>(); for (int i = 0; i < n; i++) { adj_list.add(new ArrayList<Integer>()); } for (int[] edge : edges) { adj_list.get(edge[0]).add(edge[1]); adj_list.get(edge[1]).add(edge[0]); } boolean[] visited = new boolean[n]; int count = 0; for (int i = 0; i < n; i++) { if (!visited[i]) { count++; dfs(visited, i, adj_list); } } return count; } private void dfs(boolean[] visited, int index, List<List<Integer>> adj_list) { visited[index] = true; for (int i : adj_list.get(index)) { if (!visited[i]) dfs(visited, i, adj_list); } } }