xgboost--API

xiaoxiao2021-02-28  56

xgboost.sklearn.XGBClassifier = class XGBClassifier(XGBModel, sklearn.base.ClassifierMixin)  |  Implementation of the scikit-learn API for XGBoost classification.  |    |      Parameters  |  ----------  |  max_depth : int  |      Maximum tree depth for base learners.  |  learning_rate : float  |      Boosting learning rate (xgb's "eta")  |  n_estimators : int  |      Number of boosted trees to fit.  |  silent : boolean  |      Whether to print messages while running boosting.  |  objective : string or callable  |      Specify the learning task and the corresponding learning objective or  |      a custom objective function to be used (see note below).  |  nthread : int  |      Number of parallel threads used to run xgboost.  |  gamma : float  |      Minimum loss reduction required to make a further partition on a leaf node of the tree.  |  min_child_weight : int  |      Minimum sum of instance weight(hessian) needed in a child.  |  max_delta_step : int  |      Maximum delta step we allow each tree's weight estimation to be.  |  subsample : float  |      Subsample ratio of the training instance.  |  colsample_bytree : float  |      Subsample ratio of columns when constructing each tree.  |  colsample_bylevel : float  |      Subsample ratio of columns for each split, in each level.  |  reg_alpha : float (xgb's alpha)  |      L1 regularization term on weights  |  reg_lambda : float (xgb's lambda)  |      L2 regularization term on weights  |  scale_pos_weight : float  |      Balancing of positive and negative weights.  |    |  base_score:  |      The initial prediction score of all instances, global bias.  |  seed : int  |      Random number seed.  |  missing : float, optional  |      Value in the data which needs to be present as a missing value. If  |      None, defaults to np.nan.  |    |  Note  |  ----  |  A custom objective function can be provided for the ``objective``  |  parameter. In this case, it should have the signature  |  ``objective(y_true, y_pred) -> grad, hess``:  |    |  y_true: array_like of shape [n_samples]  |      The target values  |  y_pred: array_like of shape [n_samples]  |      The predicted values  |    |  grad: array_like of shape [n_samples]  |      The value of the gradient for each sample point.  |  hess: array_like of shape [n_samples]  |      The value of the second derivative for each sample point  |    |  Method resolution order:  |      XGBClassifier  |      XGBModel  |      sklearn.base.BaseEstimator  |      sklearn.base.ClassifierMixin  |      builtins.object  |    |  Methods defined here:  |    |  __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='binary:logistic', nthread=-1, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, seed=0, missing=None)  |      Initialize self.  See help(type(self)) for accurate signature.  |    |  evals_result(self)  |      Return the evaluation results.  |        |      If eval_set is passed to the `fit` function, you can call evals_result() to  |      get evaluation results for all passed eval_sets. When eval_metric is also  |      passed to the `fit` function, the evals_result will contain the eval_metrics  |      passed to the `fit` function  |        |      Returns  |      -------  |      evals_result : dictionary  |        |      Example  |      -------  |      param_dist = {'objective':'binary:logistic', 'n_estimators':2}  |        |      clf = xgb.XGBClassifier(**param_dist)  |        |      clf.fit(X_train, y_train,  |              eval_set=[(X_train, y_train), (X_test, y_test)],  |              eval_metric='logloss',  |              verbose=True)  |        |      evals_result = clf.evals_result()  |        |      The variable evals_result will contain:  |      {'validation_0': {'logloss': ['0.604835', '0.531479']},  |       'validation_1': {'logloss': ['0.41965', '0.17686']}}  |    |  fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True)  |      Fit gradient boosting classifier  |        |      Parameters  |      ----------  |      X : array_like  |          Feature matrix  |      y : array_like  |          Labels  |      sample_weight : array_like  |          Weight for each instance  |      eval_set : list, optional  |          A list of (X, y) pairs to use as a validation set for  |          early-stopping  |      eval_metric : str, callable, optional  |          If a str, should be a built-in evaluation metric to use. See  |          doc/parameter.md. If callable, a custom evaluation metric. The call  |          signature is func(y_predicted, y_true) where y_true will be a  |          DMatrix object such that you may need to call the get_label  |          method. It must return a str, value pair where the str is a name  |          for the evaluation and value is the value of the evaluation  |          function. This objective is always minimized.  |      early_stopping_rounds : int, optional  |          Activates early stopping. Validation error needs to decrease at  |          least every <early_stopping_rounds> round(s) to continue training.  |          Requires at least one item in evals.  If there's more than one,  |          will use the last. Returns the model from the last iteration  |          (not the best one). If early stopping occurs, the model will  |          have three additional fields: bst.best_score, bst.best_iteration  |          and bst.best_ntree_limit.  |          (Use bst.best_ntree_limit to get the correct value if num_parallel_tree  |          and/or num_class appears in the parameters)  |      verbose : bool  |          If `verbose` and an evaluation set is used, writes the evaluation  |          metric measured on the validation set to stderr.  |    |  predict(self, data, output_margin=False, ntree_limit=0)  |    |  predict_proba(self, data, output_margin=False, ntree_limit=0)  |    |  ----------------------------------------------------------------------  |  Data descriptors defined here:  |    |  feature_importances_  |      Returns  |      -------  |      feature_importances_ : array of shape = [n_features]  |    |  ----------------------------------------------------------------------  |  Methods inherited from XGBModel:  |    |  __setstate__(self, state)  |    |  apply(self, X, ntree_limit=0)  |      Return the predicted leaf every tree for each sample.  |        |      Parameters  |      ----------  |      X : array_like, shape=[n_samples, n_features]  |          Input features matrix.  |        |      ntree_limit : int  |          Limit number of trees in the prediction; defaults to 0 (use all trees).  |        |      Returns  |      -------  |      X_leaves : array_like, shape=[n_samples, n_trees]  |          For each datapoint x in X and for each tree, return the index of the  |          leaf x ends up in. Leaves are numbered within  |          ``[0; 2**(self.max_depth+1))``, possibly with gaps in the numbering.  |    |  booster(self)  |      Get the underlying xgboost Booster of this model.  |        |      This will raise an exception when fit was not called  |        |      Returns  |      -------  |      booster : a xgboost booster of underlying model  |    |  get_params(self, deep=False)  |      Get parameter.s  |    |  get_xgb_params(self)  |      Get xgboost type parameters.  |    |  ----------------------------------------------------------------------  |  Methods inherited from sklearn.base.BaseEstimator:  |    |  __getstate__(self)  |    |  __repr__(self)  |      Return repr(self).  |    |  set_params(self, **params)  |      Set the parameters of this estimator.  |        |      The method works on simple estimators as well as on nested objects  |      (such as pipelines). The latter have parameters of the form  |      ``<component>__<parameter>`` so that it's possible to update each  |      component of a nested object.  |        |      Returns  |      -------  |      self  |    |  ----------------------------------------------------------------------  |  Data descriptors inherited from sklearn.base.BaseEstimator:  |    |  __dict__  |      dictionary for instance variables (if defined)  |    |  __weakref__  |      list of weak references to the object (if defined)  |    |  ----------------------------------------------------------------------  |  Methods inherited from sklearn.base.ClassifierMixin:  |    |  score(self, X, y, sample_weight=None)  |      Returns the mean accuracy on the given test data and labels.  |        |      In multi-label classification, this is the subset accuracy  |      which is a harsh metric since you require for each sample that  |      each label set be correctly predicted.  |        |      Parameters  |      ----------  |      X : array-like, shape = (n_samples, n_features)  |          Test samples.  |        |      y : array-like, shape = (n_samples) or (n_samples, n_outputs)  |          True labels for X.  |        |      sample_weight : array-like, shape = [n_samples], optional  |          Sample weights.  |        |      Returns  |      -------  |      score : float  |          Mean accuracy of self.predict(X) wrt. y.
转载请注明原文地址: https://www.6miu.com/read-53015.html

最新回复(0)