Tensorflow 02: 卷积神经网络-MNIST

xiaoxiao2021-02-28  132

前言

tensorflow是一个用于大规模数值计算的库。其后台依赖于高效的C++实现。连接后台的桥梁被称为session。 该篇博文主要介绍采用卷积神经网络实现MNIST手写体数字识别。 环境:tensorflow 1.0;  ubuntu 14.04,  python2.7

数据加载

# coding=utf-8 import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

mnist中包含的详细信息(训练集,测试集,验证集)等可参考上一片博文《Tensorflow 01: mnist-softmax》http://blog.csdn.net/u012609509/article/details/72897535。

网络参数初始化,卷积,池化

# 卷积核参数初始化 def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) # 偏置参数初始化 def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # 卷积操作 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # 池化操作 def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

【注:】参数初始化的一些trick: 权重初始化:用带一点噪声扰动的方式去初始化权重来打破对称,从而避免0梯度。 One should generally initialize weights with a small amount of noise for symmetry breaking, and to prevent 0 gradients 偏置初始化:如果使用relu激活函数,在初始化偏置bias的时候,一般用较小的正数去初始化来避免dead neurons。因为relu的数学表达是max(0, activation_val),如果activation_val始终小于0,则其经过relu计算后其值始终为0。 we’re using ReLU neurons, it is also good practice to initialize them with a slightly positive initial bias to avoid “dead neurons”

构造计算图

x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) x_image = tf.reshape(x, [-1, 28, 28, 1]) # 卷积层1---池化层1 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # 卷积层2---池化层2 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # 全连接层 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = weight_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # dropout层 keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # softmax层 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 # loss function 代价函数 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 计算模型预测的准确率 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

主要包括2个卷积层,2个池化层,1个全连接层,1个dropout层,1个softmax输出层。并采用AdamOptimizer优化方法对网络进行参数训练优化。

网络训练

sess = tf.InteractiveSession() init = tf.global_variables_initializer() sess.run(init) # 训练 # 记录每100次迭代的loss值 loss = [] # 记录每100次迭代后在对应batch上的预测的准确率的值 acc = [] for idx in range(20000): batch = mnist.train.next_batch(50) if idx % 100 == 0: train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (idx, train_accuracy)) loss_tmp = sess.run(cross_entropy, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) acc.append(train_accuracy) loss.append(loss_tmp) sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) # 画图 plt.figure() plt.plot(loss) plt.xlabel('interation') plt.ylabel('loss value') plt.figure() plt.plot(acc) plt.xlabel('interation') plt.ylabel('acc') plt.show()

【注:】在计算图中,通过参数feed_dict可以替换任何tensor,并不仅限于placeholder。 在tensorflow中,获取tensor值的2种方法: (1)采用eval: accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}) (2)采用sess.run: sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})

dropout的使用: 一般在网络训练时开启,在网络测试时关闭。

结果

loss变化曲线:可以看到收敛速度特别快。

准确率变化曲线:

用到的tensorfow api介绍

(1)tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None) 实现输入input和卷积核filter之间的卷积操作。 注意input和filter中tensor各维度的顺序:  input: [batch, in_height, in_width, in_channels]  filter: [filter_height, filter_width, in_channels, out_channels] 卷积结果的输出维度计算: 当padding=’SAME’时:  out_height = ceil(float(in_height) / float(strides[1]))  out_width = ceil(float(in_width) / float(strides[2])) 当padding=’VALID’时: out_height = ceil(float(in_height - filter_height + 1) / float(strides[1])) out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))

(2)tf.nn.max_pool(value, ksize, strides, padding, data_format=’NHWC’, name=None) 实现输入value的池化操作。池化原理可参考UFLDL中的教程: http://ufldl.stanford.edu/wiki/index.php/池化

(3)tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv) 这个函数内部包含了:softmax的计算,交叉熵的计算。相当于原来的如下2步。

y = tf.nn.softmax(tf.matmul(x, W) + b) -tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])

参考网址

https://www.tensorflow.org/get_started/mnist/pros --- tensorflow 官网教程 http://ufldl.stanford.edu/wiki/index.php/UFLDL教程 ---UFLDL教程

转载请注明原文地址: https://www.6miu.com/read-51343.html

最新回复(0)