Spark算子常规训练一

xiaoxiao2025-12-05  4

应用场景一:统计单词总长度,以及类似场景

/** * * 统计单词总长度,以及类似场景 * map应用 * * @author ccc */ public class HelloWorldMap implements Serializable { public static void main(String[] args) { SparkConf sparkConf = new SparkConf().setAppName("HelloWorldMap").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(sparkConf); // 创建rdd // 元素"abc","a" JavaRDD<String> lines = sc.textFile("/Users/ccc/Documents/data.txt"); // "abc" -> 3 // "a" -> 1 JavaRDD<Integer> lineLengths = lines.map(line -> line.length()); lineLengths.persist(StorageLevel.MEMORY_ONLY()); lineLengths.foreach(lineLength -> System.out.println(lineLength)); // 1+2+3+4=10 // (1,2)->(3,3)->(6,4)->10 Integer totalLength = lineLengths.reduce((lineLengthA, lineLengthB) -> lineLengthA + lineLengthB); System.out.println(totalLength); } }

应用场景二:统计所有单词以及对应个数,获取统计结果,以及类似场景

/** * * 统计所有单词以及对应个数,获取统计结果,以及类似场景 * MapToPair应用 * * @author ccc */ public class HelloWorldMapToPair implements Serializable { public static void main(String[] args) { SparkConf sparkConf = new SparkConf().setAppName("HelloWorldMapToPair").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(sparkConf); // 元素"a","a","b" // ("a",1),("a",1),("b",1) // ("a",2),("b",1) JavaRDD<String> lines = sc.textFile("/Users/ccc/Documents/data.txt"); JavaPairRDD<String, Integer> pairs = lines.mapToPair(line -> new Tuple2<>(line, 1)); JavaPairRDD<String, Integer> counts = pairs.reduceByKey((lineA, lineB) -> lineA + lineB); counts.foreach(count -> System.out.println(count._1() + ":" + count._2())); List<Tuple2<String, Integer>> tuple2List = counts.sortByKey().collect(); tuple2List.forEach(tuple2 -> System.out.println(tuple2._1() + ":" + tuple2._2())); } }

应用场景三:统计所有单词,以及类似场景

/** * * 统计所有单词,以及类似场景 * FlatMap应用 * * @author ccc */ public class HelloWorldFlatMap implements Serializable { public static void main(String[] args) { SparkConf sparkConf = new SparkConf().setAppName("HelloWorldFlatMap").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(sparkConf); // 元素"a b","c","d" JavaRDD<String> lines = sc.textFile("/Users/ccc/Documents/data2.txt"); // ["a b","c","d"] -> ("a","b","c","d") JavaRDD<String> flatMapRDD = lines.flatMap((FlatMapFunction<String, String>) line -> Arrays.asList(line.split(" ")).iterator()); JavaRDD<String> sortRDD = flatMapRDD.sortBy((Function<String, String>) word -> word, true, 3); sortRDD.foreach((VoidFunction<String>) line -> System.out.println(line)); } }

应用场景四:统计所有单词,获取统计结果,以及类似场景

/** * 统计所有单词,获取统计结果,以及类似场景 * FlatMapToPair应用 * * @author ccc */ public class HelloWorldFlatMapToPair implements Serializable { public static void main(String[] args) { SparkConf sparkConf = new SparkConf().setAppName("HelloWorldFlatMapToPair").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(sparkConf); // 元素"hello a","a","b","c" // ["hello a","a","b","c"] -> ("hello","a","a","b","c") // ("hello",1),("a",1),("a",1),("b",1),("c",1) // ("hello",1),("a",2),("b",1),("c",1) JavaRDD<String> lines = sc.textFile("/Users/ccc/Documents/data1.txt"); JavaPairRDD<String, Integer> pairs = lines.flatMapToPair((PairFlatMapFunction<String, String, Integer>) line -> { String[] words = line.split(" "); List<String> wordList = Arrays.asList(words); List<Tuple2<String, Integer>> tuple2List = new ArrayList<>(); wordList.forEach(word -> tuple2List.add(new Tuple2<>(word, 1))); return tuple2List.iterator(); }); JavaPairRDD<String, Integer> counts = pairs.reduceByKey((tuple2A, tuple2B) -> tuple2A + tuple2B); counts.foreach(count -> System.out.println(count._1() + ":" + count._2())); List<Tuple2<String, Integer>> tuple2List = counts.sortByKey().collect(); tuple2List.forEach(tuple2 -> System.out.println(tuple2._1 + ":" + tuple2._2())); } }

更多内容请关注微信公众号: “大数据开发与学习茶馆”

转载请注明原文地址: https://www.6miu.com/read-5040356.html

最新回复(0)