python机器学习2

xiaoxiao2025-10-31  6

import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1) y = x.pow(2)+0.2*torch.rand(x.size()) x, y = Variable(x), Variable(y) plt.scatter(x.data.numpy(),y.data.numpy()) class Net(torch.nn.Module): def __init__(self,n_feature,n_hidden,n_output): super(Net,self).__init__() self.hidden = torch.nn.Linear(n_feature,n_hidden) self.predict = torch.nn.Linear(n_hidden,n_output) def forward(self,x): x = F.relu(self.hidden(x)) x = self.predict(x) return x net = Net(1,10,1) print(net) plt.ion() plt.show() optimizer = torch.optim.SGD(net.parameters(),lr=0.5) loss_func = torch.nn.MSELoss() for t in range(100): prediction = net(x) loss = loss_func(prediction,y) optimizer.zero_grad() loss.backward() optimizer.step() if t % 30 == 0: plt.cla() plt.scatter(x.data.numpy(),y.data.numpy()) plt.plot(x.data.numpy(),prediction.data.numpy(), 'r-',lw=5) plt.text(0.5,0,'Loss=%.4f' % loss.data[0], fontdict={'size':20,'color':'red'}) plt.pause(0.1) plt.ioff()

转载请注明原文地址: https://www.6miu.com/read-5038817.html

最新回复(0)