1.加boost权重
2.重构查询语句
3.nagtive boost 负相关分数
4.constant_score 固定分数
对相关度评分进行调节和优化的常见的4种方法
1、query-time boost
GET /forum/article/_search { "query": { "bool": { "should": [ { "match": { "title": { "query": "java spark", "boost": 2 } } }, { "match": { "content": "java spark" } } ] } } }
2、重构查询结构
重构查询结果,在es新版本中,影响越来越小了。一般情况下,没什么必要的话,大家不用也行。
GET /forum/article/_search { "query": { "bool": { "should": [ { "match": { "content": "java" } }, { "match": { "content": "spark" } }, { "bool": { "should": [ { "match": { "content": "solution" } }, { "match": { "content": "beginner" } } ] } } ] } } }
3、negative boost
搜索包含java,不包含spark的doc,但是这样子很死板 搜索包含java,尽量不包含spark的doc,如果包含了spark,不会说排除掉这个doc,而是说将这个doc的分数降低 包含了negative term的doc,分数乘以negative boost,分数降低
GET /forum/article/_search { "query": { "bool": { "must": [ { "match": { "content": "java" } } ], "must_not": [ { "match": { "content": "spark" } } ] } } }
GET /forum/article/_search { "query": { "boosting": { "positive": { "match": { "content": "java" } }, "negative": { "match": { "content": "spark" } }, "negative_boost": 0.2 } } }
negative的doc,会乘以negative_boost,降低分数
4、constant_score
如果你压根儿不需要相关度评分,直接走constant_score加filter,所有的doc分数都是1,没有评分的概念了
GET /forum/article/_search { "query": { "bool": { "should": [ { "constant_score": { "query": { "match": { "title": "java" } } } }, { "constant_score": { "query": { "match": { "title": "spark" } } } } ] } }
5.自己写函数
给所有的帖子数据增加follower数量
POST /forum/article/_bulk { "update": { "_id": "1"} } { "doc" : {"follower_num" : 5} } { "update": { "_id": "2"} } { "doc" : {"follower_num" : 10} } { "update": { "_id": "3"} } { "doc" : {"follower_num" : 25} } { "update": { "_id": "4"} } { "doc" : {"follower_num" : 3} } { "update": { "_id": "5"} } { "doc" : {"follower_num" : 60} }
将对帖子搜索得到的分数,跟follower_num进行运算,由follower_num在一定程度上增强帖子的分数 看帖子的人越多,那么帖子的分数就越高
GET /forum/article/_search { "query": { "function_score": { "query": { "multi_match": { "query": "java spark", "fields": ["tile", "content"] } }, "field_value_factor": { "field": "follower_num", "modifier": "log1p", "factor": 0.5 }, "boost_mode": "sum", "max_boost": 2 } } }