数位dp是一种计数用的dp,一般就是要统计一个区间[le,ri]内满足一些条件数的个数。所谓数位dp,字面意思就是在数位上进行dp咯。数位还算是比较好听的名字,数位的含义:一个数有个位、十位、百位、千位......数的每一位就是数位啦! 之所以要引入数位的概念完全就是为了dp。数位dp的实质就是换一种暴力枚举的方式,使得新的枚举方式满足dp的性质,然后记忆化就可以了。
两种不同的枚举:对于一个求区间[le,ri]满足条件数的个数,最简单的暴力如下:
for(int i=le;i<=ri;i++) if(right(i)) ans++;然而这样枚举不方便记忆化,或者说根本无状态可言。 新的枚举:控制上界枚举,从最高位开始往下枚举,例如:ri=213,那么我们从百位开始枚举:百位可能的情况有0,1,2(觉得这里枚举0有问题的继续看)
然后每一位枚举都不能让枚举的这个数超过上界213(下界就是0或者1,这个次要),当百位枚举了1,那么十位枚举就是从0到9,因为百位1已经比上界2小了,后面数位枚举什么都不可能超过上界。所以问题就在于:当高位枚举刚好达到上界是,那么紧接着的一位枚举就有上界限制了。具体的这里如果百位枚举了2,那么十位的枚举情况就是0到1,如果前两位枚举了21,最后一位之是0到3(这一点正好对于代码模板里的一个变量limit 专门用来判断枚举范围)。最后一个问题:最高位枚举0:百位枚举0,相当于此时我枚举的这个数最多是两位数,如果十位继续枚举0,那么我枚举的就是以为数咯,因为我们要枚举的是小于等于ri的所以数,当然不能少了位数比ri小的咯!(这样枚举是为了无遗漏的枚举,不过可能会带来一个问题,就是前导零的问题,模板里用lead变量表示,不过这个不是每个题目都是会有影响的,可能前导零不会影响我们计数,具体要看题目)
由于这种新的枚举只控制了上界所以我们的Main函数总是这样:
int main() { long long le,ri; while(~scanf("%lld%lld",&le,&ri)) printf("%lld\n",solve(ri)-solve(le-1)); }w_w 是吧!统计[1,ri]数量和[1,le-1],然后相减就是区间[le,ri]的数量了,这里我写的下界是1,其实0也行,反正相减后就没了,注意题目中le的范围都是大于等于1的(不然le=0,再减一就G_G了) 在讲例题之前先讲个基本的动态模板(先看后面的例题也行):dp思想,枚举到当前位置pos,状态为state(这个就是根据题目来的,可能很多,毕竟dp千变万化)的数量(既然是计数,dp值显然是保存满足条件数的个数)
相信读者还对这个有不少疑问,笔者认为有必要讲一下记忆化为什么是if(!limit)才行,大致就是说有无limit会出现状态冲突,举例: 约束:数位上不能出现连续的两个1(11、112、211都是不合法的)
假设就是[1,210]这个区间的个数
状态:dp[pos][pre]:当前枚举到pos位,前面一位枚举的是pre(更加前面的位已经合法了),的个数(我的pos从0开始)
先看错误的方法计数,就是不判limit就是直接记忆化
那么假设我们第一次枚举了百位是0,显然后面的枚举limit=false,也就是数位上0到9的枚举,然后当我十位枚举了1,此时考虑dp[0][1],就是枚举到个位,前一位是1的个数,显然dp[0][1]=9;(个位只有是1的时候是不满足的),这个状态记录下来,继续dfs,一直到百位枚举了2,十位枚举了1,显然此时递归到了pos=0,pre=1的层,而dp[0][1]的状态已经有了即dp[pos][pre]!=-1;此时程序直接return dp[0][1]了,然而显然是错的,因为此时是有limit的个位只能枚举0,根本没有9个数,这就是状态冲突了。有lead的时候可能出现冲突,这只是两个最基本的不同的题目可能还要加限制,反正宗旨都是让dp状态唯一
对于这个错误说两点:一是limit为true的数并不多,一个个枚举不会很浪费时间,所以我们记录下! limit的状态解决了不少子问题重叠。第二,有人可能想到把dp状态改一下dp[pos][state][limit]就是分别记录不同limit下的个数,这种方法一般是对的,关于这个具体会讲,下面有题bzoj3209会用到这个。
数位的部分就是这些,然后就是难点,dp部分,dp大牛的艺术,弱鸡只能看看+...+
既然从高位往低位枚举,那么状态一般都是与前面已经枚举的数位有关并且通常是根据约束条件当前枚举的这一位能使得状态完整(比如一个状态涉及到连续k位,那么就保存前k-1的状态,当前枚举的第k个是个恰好凑成成一个完整的状态,不过像那种状态是数位的和就直接保存前缀和为状态了),不过必然有一位最简单的一个状态dp[pos]当前枚举到了pos位。dp部分就要开始讲例题了,不过会介绍几种常用防tle的优化。
例1.求a~b中不包含49的数的个数. 0 < a、b < 2*10^9
注意到n的数据范围非常大,暴力求解是不可能的,考虑dp,如果直接记录下数字,数组会开不起,该怎么办呢?要用到数位dp.
数位dp一般应用于:
求出在给定区间[A,B]内,符合条件P(i)的数i的个数.
条件P(i)一般与数的大小无关,而与 数的组成 有关.
这样,我们就要考虑一些特殊的记录方法来做这道题.一般来说,要保存给定数的每个位置的数.然后要记录的状态为当前操作数的位数,剩下的就是根据题目的需要来记录.可以发现,数位dp的题做法一般都差不多,只是定义状态的不同罢了.
下面开始针对例题进行分析:
我们要求[a,b]不包含49的数的个数,可以想到利用前缀和来做,具体来说,就是[a,b] = [0,b] - [0,a),(")"是不包括a),我们先求出给定a,b的每个位置的数,保存在数组s中,例如a = 109,那么a[1] = 9,a[2] = 0,a[3] = 1.然后开始dp,我们可以选择记忆化搜索或者是递推,前一种相对于第二种而言简单和较为容易理解一些,所以我们选择记忆化搜索.那么需要记录些什么呢?首先长度是一定要记录的,然后记录当前的数位是否为4,这样就便于在记忆化搜索中得到答案.
然后进行记忆化搜索,记录上一位是否为4和枚举这一位,如果没有限制的话很好办,直接枚举就可以了,但是这样可能会超空间,因此我们每次都必须要判断是否有最大的限制,这里不是很好说,看代码更容易理解:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; int a, b, shu[20], dp[20][2]; int dfs(int len, bool if4, bool shangxian) { if (len == 0) return 1; if (!shangxian && dp[len][if4]) //为什么要返回呢?可以画图理解当我们搜到3XXX时,程序运行到1XXX时就已经把3XXX之后的搜索完了,记忆化也是这个用意. return dp[len][if4]; int cnt = 0, maxx = (shangxian ? shu[len] : 9); for (int i = 0; i <= maxx; i++) { if (if4 && i == 9) continue; cnt += dfs(len - 1, i == 4, shangxian && i == maxx); //只有之前有限制现在的达到了上限才能构成限制 } return shangxian ? cnt : dp[len][if4] = cnt; //如果有限制,那么就不能记忆化,否则记忆的是个错误的数. } int solve(int x) { memset(shu, 0, sizeof(shu)); int k = 0; while (x) { shu[++k] = x % 10; //保存a,b的数 x /= 10; } return dfs(k, false, true); } int main() { scanf("%d%d", &a, &b); printf("%d\n", solve(b) - solve(a - 1)); //while (1); return 0; }再来看一道题:例题2.求a~b中不包含62和4的数的个数. 0 < a、b < 2*10^9
分析:和上一题一样,只需要再判断一下4是否出现和上一位是否为6即可.
传送门
例题3:找出1~n范围内含有13并且能被13整除的数字的个数.
分析:和例1相比多了一个整除,怎么处理呢?其实只需要在记忆化搜索中增加一个参数mod即可,利用(a * b) % mod = (a % mod) * (b % mod)和(a + b) % mod = (a % mod) + (b % mod)来计算.比如说73 % 10 = ((7 % 10) * 10 + 3) % 10,但要注意本题是要找含有13的数,那么在处理的时候就要进行分类讨论.
传送门
例题4:找出区间内平衡数的个数,所谓的平衡数,就是以这个数字的某一位为支点,另外两边的数字大小乘以力矩之和相等,即为平衡数。
分析:对于这道题,如果一个数中每个数位到支点的距离*这个数位的和为0,那么这个数为平衡数.这样我们定义状态就要考虑力矩和和支点.支点可以在dfs前枚举得到,力矩和可以在处理每个数位的时候得到.但是这个算法是有缺陷的,例如0000,000000也会被统计,我们只需要减去给定范围0全是0的数的个数即可.这里可以进行一个小小的优化,如果力矩和已经为负数,说明已经处理到了支点左边,接着处理下去绝对会小于0,那么回溯即可.
传送门
例题5:求区间[a,b]中的数转化为二进制后0比1多的数的个数.
分析:典型的数位dp题,先在二进制上做dp,最后转化到十进制上.求出[0,b]和[0,a-1]的答案,相减就可以了.
一个坑点:二进制数必须要存在,也就是说必须要有一个1开头.
传送门
例题6:我们定义十进制数x的权值为f(x) = a(n)*2^(n-1)+a(n-1)*2(n-2)+...a(2)*2+a(1)*1,a(i)表示十进制数x中第i位的数字。题目给出a,b,求出0~b有多少个权值不大于f(a)的数。 分析:对于这道题,我们可以用dp[len][ans]表示长度为len且权值不大于ans的数。这道题用记忆化搜索,除边界条件外记录dp[len][ans]的值,下一次发现以前已经计算过了就可以直接return;
传送门
例题6:求一个区间内的Beautiful numbers有多少个。Beautiful numbers指:一个数能整除所有组成它的非0数字。 例如15可以被1和5整除,所以15是Beautiful numbers 分析:被每一位整除则用二进制记录已经包括的数字的个数,以及对2520取模后的状态。 由于对5整除当且仅当最后一个数为0或5,对2整除当且仅当最后一个数为偶数,且1~9的最小公倍数为2520,不包括2,5后的最小公倍数为252。所以除最后一层对2520取模,其余时候都对252取模即可。由于整除的状态有限,最多只有48个,于是我们预处理出这48个数,并来一个映射就好(不然会TLE)。
传送门
到这里不得不和大家说再见了~ 希望大家能够有所收获
感谢下面两位大佬的博客~
https://www.cnblogs.com/zbtrs/p/6106783.html?tdsourcetag=s_pctim_aiomsg
https://blog.csdn.net/wust_zzwh/article/details/52100392