原
吴恩达机器学习 - PCA算法降维
2018年06月25日 13:08:17
离殇灬孤狼
阅读数:152
更多
<div class="tags-box space">
<span class="label">个人分类:</span>
<a class="tag-link" href="https://blog.csdn.net/wyg1997/article/category/7742222" target="_blank">吴恩达机器学习 </a>
</div>
</div>
<div class="operating">
</div>
</div>
</div>
</div>
<article>
<div id="article_content" class="article_content clearfix csdn-tracking-statistics" data-pid="blog" data-mod="popu_307" data-dsm="post" style="height: 2070px; overflow: hidden;">
<div class="article-copyright">
版权声明:如果感觉写的不错,转载标明出处链接哦~blog.csdn.net/wyg1997 https://blog.csdn.net/wyg1997/article/details/80800514 </div>
<div class="markdown_views">
<!-- flowchart 箭头图标 勿删 -->
<svg xmlns="http://www.w3.org/2000/svg" style="display: none;"><path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path></svg>
<p>题目链接:<a href="https://s3.amazonaws.com/spark-public/ml/exercises/on-demand/machine-learning-ex7.zip" rel="nofollow" target="_blank">点击打开链接</a></p>
笔记:
数据可视化:
求矩阵U和S(pca.m):
function [U, S] = pca(X)
[m, n] =
size(X);
U =
zeros(n);
S =
zeros(n);
sigma =
X'*
X./m;
[U, S, ~] = svd(sigma);
end
12345678910111213141516171819202122232425262728
降维(projectData.m):
function Z = projectData(X, U, K)
Z =
zeros(
size(X,
1), K);
U_reduce = U(:,
1:K);
Z = X*U_reduce;
end
1234567891011121314151617181920212223242526
压缩重现(投影后的位置)(recoverData.m):
function X_rec = recoverData(Z, U, K)
X_rec =
zeros(
size(Z,
1),
size(U,
1));
X_rec = Z*U(:,
1:K)
';
% =============================================================
end
12345678910111213141516171819202122232425262728
效果图:
然后是两个应用了
第一个是人脸数据的压缩,可以加速其它的学习算法
第二个是数据可视化,把一个3D的数据压缩到2D上看的更清楚
如图:
阅读更多