原
吴恩达机器学习 - 异常检测
2018年06月25日 21:09:33
离殇灬孤狼
阅读数:69
</div>
<div class="operating">
</div>
</div>
</div>
</div>
<article>
<div id="article_content" class="article_content clearfix csdn-tracking-statistics" data-pid="blog" data-mod="popu_307" data-dsm="post" style="height: 2070px; overflow: hidden;">
<div class="article-copyright">
版权声明:如果感觉写的不错,转载标明出处链接哦~blog.csdn.net/wyg1997 https://blog.csdn.net/wyg1997/article/details/80807493 </div>
<div class="markdown_views">
<!-- flowchart 箭头图标 勿删 -->
<svg xmlns="http://www.w3.org/2000/svg" style="display: none;"><path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path></svg>
<p>题目链接:<a href="https://s3.amazonaws.com/spark-public/ml/exercises/on-demand/machine-learning-ex8.zip" rel="nofollow" target="_blank">点击打开链接</a></p>
笔记:
数据可视化:
load(
'ex8data1.mat');
plot(X(:,
1), X(:,
2),
'bx');
axis(
[0 30 0 30]);
xlabel(
'Latency (ms)');
ylabel(
'Throughput (mb/s)');
1234567
效果图:
求参数μ和σ2σ2:
公式:
Code(estimateGaussian.m):
function [mu sigma2] = estimateGaussian(X)
[m, n] =
size(X);
mu =
zeros(n,
1);
sigma2 =
zeros(n,
1);
mu = mean(X)
';
sigma2 = (sum(bsxfun(@minus,X,mu').^
2)./m)
';
% =============================================================
end
12345678910111213141516171819202122232425262728
选择最优的ε
这个用F1F1来衡量:
公式:
Code(selectThreshold.m)(注意这里的true position,false position,false negative的求法):
function [bestEpsilon bestF1] = selectThreshold(yval, pval)
bestEpsilon =
0;
bestF1 =
0;
F1 =
0;
stepsize = (max(pval) - min(pval)) /
1000;
for epsilon = min(pval):stepsize:max(pval)
predictions = pval < epsilon;
tp = sum((predictions ==
1) & (yval ==
1));
fp = sum((predictions ==
1) & (yval ==
0));
fn = sum((predictions ==
0) & (yval ==
1));
prec = tp/(tp+fp);
rec = tp/(tp+fn);
F1 =
2*prec*rec/(prec+rec);
if F1 > bestF1
bestF1 = F1;
bestEpsilon = epsilon;
end
end
end
123456789101112131415161718192021222324252627282930313233343536373839404142
效果图(求出ε后,继续运行ex8.m画出的图):
另外还有多元高斯分布这里没有实验,但这也是一个很好的算法,不要忘了!
阅读更多