Unsupervised Transfer
Generate To Adapt: Aligning Domains using Generative Adversarial Networks
1.Main
using unlabeled target data help transfer(target image&class seen)
2.structure
3. Loss Func
Source Data: D: G:
C&F:
Target data
4.DataSet
Digit classification (MNIST, SVHN and USPS datasets)Object recognition using OFFICE datasetsDomain adaptation from synthetic to real data;CAD synthetic dataset (source) and a subset of PASCAL VOC dataset(target)VISDA dataset:Trasfer competation
5.metric
classification accurancy
Disentangled Classification and Reconstruction for Zero-shot learning
Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks
1.Main
prevents the semantic loss while target image&class unseen
2. Structure
3. Loss Func
Class loss Reconstruction Loss 3.Adversarial Loss
4.Dataset
CUB, AWA, SUN and aPY, SP-AEN
5.Metric
harmonic mean (H) on generalized ZSL The Seen-Unseen accuracy Curve (SUC)
Conditional GAN on feature space
Adversarial Feature Augmentation for Unsupervised Domain Adaptation
1.Main
Gener new feature vec for augmentation
2.Structure
3.Loss Func
S1 Train reference feature encoder E
S Classfier C in Source dataS2 Conditional Gan for gener new feature vec in Source domain,get Encoder SS3 Train encoder in T&S advertising with S
4.Datasets
mnist ,usps :white digit on black backgroundsvhn:real images of street view house numberssyn digits:syn on svhnnyud:object RGB->D
5.Metric
t-SNEAPs:feature augmentationAccuracy:compare with C trained on S,T,Other method