scikit-learn使用joblib持久化模型过程中的问题详解

xiaoxiao2025-05-20  34

在机器学习过程中,一般用来训练模型的过程比较长,所以我们一般会将训练的模型进行保存(持久化),然后进行评估,预测等等,这样便可以节省大量的时间。

在模型持久化过程中,我们使用scikit-learn提供的joblib.dump()方法,但是在使用过程中会出现很多问题。如我们使用如下语句:

joblib.dump(clf,'../../data/model/randomforest.pkl')

此语句将产生大量的模型文件,如下图所示

然后,我们再使用joblib.load(‘../../data/model/randomforest.pkl’)进行加载,会出现如下错误:

Traceback (most recent call last):   File "E:\workspace\forest\com\baihe\RandomForest_losing.py", line 65, in <module>     clf = joblib.load('../../data/model/randomforest.pkl')   File "D:\Program Files\python27\lib\site-packages\sklearn\externals\joblib\numpy_pickle.py", line 425, in load     obj = unpickler.load()   File "D:\Program Files\python27\lib\pickle.py", line 858, in load     dispatch[key](self)   File "D:\Program Files\python27\lib\site-packages\sklearn\externals\joblib\numpy_pickle.py", line 285, in load_build     Unpickler.load_build(self)   File "D:\Program Files\python27\lib\pickle.py", line 1217, in load_build     setstate(state)   File "_tree.pyx", line 2280, in sklearn.tree._tree.Tree.__setstate__ (sklearn\tree\_tree.c:18350) ValueError: Did not recognise loaded array layout

正确使用joblib的方法是:设置dump中的compress参数,当设置参数时,模型持久化便会压缩成一个文件。源码中对compress参数的描述如下:

compress: integer for 0 to 9, optional         Optional compression level for the data. 0 is no compression.         Higher means more compression, but also slower read and         write times. Using a value of 3 is often a good compromise.         See the notes for more details.

以下是我们进行模型持久化的正确操作语句:

#save model joblib.dump(clf,'../../data/model/randomforest.pkl',compress=3) #load model to clf clf = joblib.load('../../data/model/randomforest.pkl')

 

转载请注明原文地址: https://www.6miu.com/read-5030420.html

最新回复(0)