单击显示鼠标坐标点: 用鼠标事件+多线程+退出event
from matplotlib import pyplot as plt from threading import Thread import time import numpy as np XY = [0, 0, 0] x = (8, 9);y = (8, 9) # ================================ # 坐标变换处理函数 def coordinate_change(fig, ax, xy): x = xy[1]; y = xy[2] inv11 = ax.transData.inverted() # matplotlib.transforms.CompositeGenericTransform inv12 = ax.transAxes.inverted() inv13 = fig.transFigure.inverted() point21 = inv11.transform((x, y)) # 显示坐标变换为Data坐标 point22 = inv12.transform((x, y)) # 显示坐标变换为Axes坐标 point23 = inv13.transform((x, y)) # 显示坐标变换为Figure坐标 pixel11 = ax.transData.transform(point21) # Data坐标变换为显示坐标系 pixel12 = ax.transAxes.transform(point22) # Axes坐标变换为显示坐标系 pixel13 = fig.transFigure.transform(point23) # Figure坐标变换为显示坐标系 print('==>Data,Axes,Figure={};pixel={};time={}'.format( (point21, point22, point23), (pixel11, pixel12, pixel13), time.ctime())) # ================================ # 绘图 fig = plt.figure(figsize=(6.4, 4.8), dpi=100) ax = fig.add_subplot(111) plt.scatter(x, y, s=30, c='r', alpha=0.5, marker='x') ax.set_xlim(0, 10) # Data坐标 ax.set_ylim(0, 10) # Data坐标 # 在画好的图上加字: ax.text(2, 2, 'label0') # 数据坐标 ax.text(320, 240, 'label1', transform=None) # 显示坐标像素 ax.text(0.2, 0.8, 'label2', transform=ax.transAxes) # Axes坐标0-1 ax.text(0.2, 0.8, 'label3', transform=fig.transFigure) # Figure坐标0-1 ax.text(2, 4, 'label4', transform=ax.transData) # ================================ # 鼠标事件:单击显示坐标轴数字 def onclick(event): # fx=event.xdata if event.xdata else 0 # fy=event.ydata if event.xdata else 0 # print('%s click: button=%d, x=%d, y=%d, xdata=%f, ydata=%f' % # ('double' if event.dblclick else 'single', event.button,event.x, event.y, fx, fy)) global XY XY = [1, event.x, event.y].copy() # while XY[0]: # 阻塞,等待数据处理完成即打印显示 # pass # fig=event.canvas.figure cid = fig.canvas.mpl_connect('button_press_event', onclick) # ================================ close_flag=0#绘图窗口关闭标志 def handle_close(evt): #窗口关闭事件 print('Closed Figure!') global close_flag close_flag=1 cid1=fig.canvas.mpl_connect('close_event', handle_close) # ================================ # 多线程 def run(fig, ax, xy): global XY while not close_flag: if XY[0]: coordinate_change(fig, ax, XY) XY[0] = 0 thread1 = Thread(target=run, args=(fig, ax, XY), name='Thread-A') thread1.start() # ================================ plt.show() #''' 结果打印显示: ==>Data,Axes,Figure=(array([3.58870968, 7.60822511]), array([0.35887097, 0.76082251]), array([0.403125 , 0.69583333])); pixel=(array([258., 334.]), array([258., 334.]), array([258., 334.])); time=Mon Oct 29 13:38:54 2018 '''
2.2.示例2
单击显示鼠标坐标点: 用鼠标事件+event.canvas:
from matplotlib import pyplot as plt x = (8, 9);y = (8, 9) # ================================ # 坐标变换处理函数 def coordinate_change(fig, ax, xy): x = xy[1];y = xy[2] inv11 = ax.transData.inverted() # matplotlib.transforms.CompositeGenericTransform inv12 = ax.transAxes.inverted() inv13 = fig.transFigure.inverted() point21 = inv11.transform((x, y)) # 显示坐标变换为Data坐标 point22 = inv12.transform((x, y)) # 显示坐标变换为Axes坐标 point23 = inv13.transform((x, y)) # 显示坐标变换为Figure坐标 pixel11 = ax.transData.transform(point21) # Data坐标变换为显示坐标系 pixel12 = ax.transAxes.transform(point22) # Axes坐标变换为显示坐标系 pixel13 = fig.transFigure.transform(point23) # Figure坐标变换为显示坐标系 # ================================ def show(point): return '( {:4.1f},{:4.1f} )'.format(point[0],point[1]) b=(pixel11.all()==pixel12.all()) and (pixel12.all()==pixel13.all()) str1='pixel11 =pixel12 =pixel13 ='+str(b)+';像素='+show(pixel13)+';'+\ '数据='+show(point21) + ';axes=' + show(point22) + ';figure=' + show(point23) print(str1) # ================================ # 绘图 fig = plt.figure(figsize=(6.4, 4.8), dpi=100) ax = fig.add_subplot(111) plt.scatter(x, y, s=30, c='r', alpha=0.5, marker='x') ax.set_xlim(0, 10) # Data坐标 ax.set_ylim(0, 10) # Data坐标 # 在画好的图上加字: ax.text(2, 2, 'label0') # 数据坐标 ax.text(320, 240, 'label1', transform=None) # 显示坐标像素 ax.text(0.2, 0.8, 'label2', transform=ax.transAxes) # Axes坐标0-1 ax.text(0.2, 0.8, 'label3', transform=fig.transFigure) # Figure坐标0-1 ax.text(2, 4, 'label4', transform=ax.transData) # ================================ # 鼠标事件:单击显示坐标轴数字 def onclick(event): xy = [1, event.x, event.y].copy() fig=event.canvas.figure ax=fig.get_axes()[0] coordinate_change(fig, ax, xy) print('') cid = fig.canvas.mpl_connect('button_press_event', onclick) plt.show() #
结果显示:
... pixel11 =pixel12 =pixel13 =True;像素=( 577.0,116.0 );数据=( 10.0, 1.7 );axes=( 1.0, 0.2 );figure=( 0.9, 0.2 ) pixel11 =pixel12 =pixel13 =True;像素=( 600.0,185.0 );数据=( 10.5, 3.6 );axes=( 1.0, 0.4 );figure=( 0.9, 0.4 )
2.2.实例3 # 混合坐标 import numpy import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 坐标轴负数的负号显示 # ====================================== #直线 def func1(x): return 0.4*x+1.3 #曲线 def func2(x): return 0.6*x*x+0.1*x+0.2 #交点横坐标 def find_intersects(x,y1,y2): d=y1-y2 idx=numpy.where(d[:-1]*d[1:]<=0)[0] x1,x2=x[idx],x[idx+1] d1,d2=d[idx],d[idx+1] return -d1*(x2-x1)/(d2-d1)+x1 # ======================================= #绘图 x=numpy.linspace(-3,3,100) f1=func1(x) f2=func2(x) fig,ax=plt.subplots(figsize=(6,4)) ax.plot(x,func1(x),x,func2(x)) #找到交点横坐标,将交点用圆圈表示 x1,x2=find_intersects(x,f1,f2) ax.plot(x1,func1(x1),'o') ax.plot(x2,func2(x2),'o') #直线>曲线部分的面积填充 ax.fill_between(x,f1,f2,where=f1>f2,color='g',alpha=0.5) # ====================================== #将一个以数据横坐标为宽,子图高度为高的矩形,用颜色填充 #transforms的blended_transform_factory函数可创建一个混合坐标(数据坐标,子图坐标) from matplotlib import transforms trans=transforms.blended_transform_factory(ax.transData,ax.transAxes) ax.fill_between([x1,x2],0,1,transform=trans,alpha=0.1) # ====================================== #子图注释 a=ax.text(0.05,0.95,'直线二次曲线交点',transform=ax.transAxes, va='top',fontsize=18, bbox={'color':'r','alpha':0.4,}) # ====================================== #箭头注释 #data表示使用的是数据坐标系中的坐标变换对象 #axes fraction表示使用的是子图坐标系的坐标变换对象 #offset points表示文字与箭头的相对位置保持不变 #arrowprops为描述箭头样式的字典 arrow={'arrowstyle':'fancy,tail_width=0.6','color':'gray'} ax.annotate('交点',xy=(x1,func1(x1)),xycoords='data',xytext=(0.4,0.5), textcoords='axes fraction',arrowprops=arrow) ax.annotate('交点',xy=(x2,func2(x2)),xycoords='data',xytext=(0.4,0.5), textcoords='axes fraction',arrowprops=arrow) xm=(x1+x2)/2 ym=(func1(xm)-func2(xm))/2+func2(xm) ax.annotate('直线大于曲线区域',xy=(xm,ym),xycoords='data',xytext=(30,-30), textcoords='offset points',arrowprops=arrow, bbox={'color':'g','alpha':0.4,} ) plt.show() # ===============================================================
===