1、风险视图
library(ggplot2)
library(plyr)
homedir <-
"C:/Users/Administrator/Desktop/rrr1/rrr"
setwd(homedir)
a <- read.csv(
'C:/Users/Administrator/Desktop/bianliang.csv')
b <- sub(
"Min. :|1st Qu.:|Median :|Mean :|3rd Qu.:|Max. :",
"",summary(a[, -length(a)]))
table1 <- as.data.frame(matrix(b[
1:length(b)],nrow = length(row.names(b)), ncol = length(colnames(b))))
row.names(table1) = c(
'min',
'P25',
'P50',
'mean',
'P75',
'max')
colnames(table1) = colnames(b)
table1 <- table1[-
4,]
table1 <- apply(table1, c(
1,
2), as.character)
table1 <- as.data.frame(apply(table1, c(
1,
2), as.numeric))
table1[
5,] <- table1[
5,]+
0.0001
lis1 <- list()
label <- list()
for(i
in 1:ncol(table1)){
lis1[[i]] <- cbind(a[,i], as.character(cut(a[,i], unique(table1[,i]),right =
FALSE)), cut(a[,i], unique(table1[,i]),right =
FALSE), a$y)
lis1[[i]] <- as.data.frame(lis1[[i]])
rbi <- ddply(lis1[[i]], .(V3, V4), nrow)
ce <- ddply(rbi, .(V3), transform, percent = V1/sum(V1)*
100)
p <- ggplot(ce, aes(x = V3, y = percent, fill = V4)) + geom_bar(stat =
'identity')
png(filename=paste0(
"graphs/", i,
"_category.png"), width=
640, height=
480)
print(p)
dev.off()
}
2、异常值处理
最小值一般均为0,故对过大值进行处理。选取了3个分位数:99%,99.5%,99.9%,分别用后一个除以前一个,得到两个比值,选取比值较大的作为‘拐点’,通过观察,大部分变量的‘拐点’为后者,故将大于99.5%分位数的值定义为异常值,用99.5%分位数代替。
homedir <-
'C:/Users/Administrator/Desktop'
setwd(homedir)
dic <- read.csv(
'dic.csv')
try <- read.csv(
'try.csv')
for(i
in colnames(
try)){
try[,which(colnames(
try) == i)][which(
try[,which(colnames(
try) == i)]>dic[which(dic$var == i),]$extreme)] <- dic[which(dic$var == i),]$extreme
}
list_new <- list()
for(i
in 1:ncol(
try)){
list_new[[i]] <-
try[,i][which(
try[,i]<=dic[i,]$extreme)]
}
3、groupby功能
require(dplyr)
data%>%
group_by(a)%>%
summarise(AveMPG=mean(b),std=sd(b))
library(plyr)
rbi <- ddply(data, .(V3, V4), nrow)
ce <- ddply(rbi, .(V3), transform, percent = V1/sum(V1)*
100)