向量的分解

xiaoxiao2022-06-11  28

【题目】 如图,在 △ A B C \triangle ABC ABC 中,设 A B → = a → \overrightarrow{AB}=\overrightarrow{a} AB =a A C → = b → \overrightarrow{AC}=\overrightarrow{b} AC =b A P AP AP 的中点为 Q Q Q B Q BQ BQ 的中点为 R R R C R CR CR 的中点恰为 P P P,则 A P → = ( ) \overrightarrow{AP}=(\quad) AP =()

A . 1 2 a → + 1 2 b → A.\dfrac{1}{2}\overrightarrow{a}+\dfrac{1}{2}\overrightarrow{b} A.21a +21b

B . 1 3 a → + 2 3 b → B.\dfrac{1}{3}\overrightarrow{a}+\dfrac{2}{3}\overrightarrow{b} B.31a +32b

C . 2 7 a → + 4 7 b → C.\dfrac{2}{7}\overrightarrow{a}+\dfrac{4}{7}\overrightarrow{b} C.72a +74b

D . 4 7 a → + 2 7 b → D.\dfrac{4}{7}\overrightarrow{a}+\dfrac{2}{7}\overrightarrow{b} D.74a +72b


【解析】 因为 A P → + P C → = A P → + R P → = b → ⋯ ⋯ ① \overrightarrow{AP}+\overrightarrow{PC}=\overrightarrow{AP}+\overrightarrow{RP}=\overrightarrow{b}\qquad\cdots\cdots① AP +PC =AP +RP =b A Q → + Q B → = 1 2 A P → + 2 Q R → = a → ⋯ ⋯ ② \overrightarrow{AQ}+\overrightarrow{QB}=\dfrac{1}{2}\overrightarrow{AP}+2\overrightarrow{QR}=\overrightarrow{a}\quad\cdots\cdots② AQ +QB =21AP +2QR =a ① × 2 + ② ①\times2+② ×2+得: 5 2 A P → + 2 Q P → = 7 2 A P → = 2 b → + a → \dfrac{5}{2}\overrightarrow{AP}+2\overrightarrow{QP}=\dfrac{7}{2}\overrightarrow{AP}=2\overrightarrow{b}+\overrightarrow{a} 25AP +2QP =27AP =2b +a 即: A P → = 4 7 b → + 2 7 a → . \overrightarrow{AP}=\dfrac{4}{7}\overrightarrow{b}+\dfrac{2}{7}\overrightarrow{a}. AP =74b +72a . 即答案选 C.

转载请注明原文地址: https://www.6miu.com/read-4930648.html

最新回复(0)