优化版
public class WeightedQuickUnionUF { private int[] parent; // parent[i] = parent of i 父链接数组 private int[] size; // size[i] = number of sites in subtree rooted at i 各个节点所对应的分量大小 private int count; // number of components 连通分量的数量 public WeightedQuickUnionUF(int n) { count = n; parent = new int[n]; size = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; size[i] = 1; } } public int count() { return count; } public int find(int p) { validate(p); while (p != parent[p]) p = parent[p]; return p; } // validate that p is a valid index private void validate(int p) { int n = parent.length; if (p < 0 || p >= n) { throw new IllegalArgumentException("index " + p + " is not between 0 and " + (n-1)); } } public boolean connected(int p, int q) { return find(p) == find(q); } public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; // make smaller root point to larger one if (size[rootP] < size[rootQ]) { parent[rootP] = rootQ; size[rootQ] += size[rootP]; } else { parent[rootQ] = rootP; size[rootP] += size[rootQ]; } count--; } public static void main(String[] args) { int n = StdIn.readInt(); edu.princeton.cs.algs4.WeightedQuickUnionUF uf = new edu.princeton.cs.algs4.WeightedQuickUnionUF(n); while (!StdIn.isEmpty()) { int p = StdIn.readInt(); int q = StdIn.readInt(); if (uf.connected(p, q)) continue; uf.union(p, q); StdOut.println(p + " " + q); } StdOut.println(uf.count() + " components"); } }