【Python学习系列四】Python程序通过hadoop-streaming提交到Hadoop集群执行MapReduce

xiaoxiao2021-02-28  86

场景:将Python程序通过hadoop-streaming提交到Hadoop集群执行。 参考:http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/ 1、Python编写Mapper    业务逻辑是从会从标准输入(stdin)读取数据,默认以空格分割单词,然后按行输出单词机器出现频率到标准输出(stdout),不过整个Map处理过程并不会统计每个单词出现的总次数,而是直接输出“word,1”,以便作为Reduce的输入进行统计。

   代码如下:

#coding:utf-8 ''' Created on 2017年6月7日 @author: fjs ''' #!/usr/bin/env python import sys # input comes from STDIN (standard input) for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # split the line into words words = line.split() # increase counters for word in words: # write the results to STDOUT (standard output); # what we output here will be the input for the # Reduce step, i.e. the input for reducer.py # # tab-delimited; the trivial word count is 1 print '%s\t%s' % (word, 1)2、Python编写Reducer    Reduce代码,它会从标准输入(stdin)读取mapper.py的结果,然后统计每个单词出现的总次数并输出到标准输出(stdout)。    代码如下:

#coding:utf-8 ''' Created on 2017年6月7日 @author: fjs ''' #!/usr/bin/env python from operator import itemgetter import sys current_word = None current_count = 0 word = None # input comes from STDIN for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # parse the input we got from mapper.py word, count = line.split('\t', 1) # convert count (currently a string) to int try: count = int(count) except ValueError: # count was not a number, so silently # ignore/discard this line continue # this IF-switch only works because Hadoop sorts map output # by key (here: word) before it is passed to the reducer if current_word == word: current_count += count else: if current_word: # write result to STDOUT print '%s\t%s' % (current_word, current_count) current_count = count current_word = word # do not forget to output the last word if needed! if current_word == word: print '%s\t%s' % (current_word, current_count) 3、文件准备    1)将python程序文件上传到Hadoop集群客户机,为文件赋予执行权限    #chmod +x /data/etlcj/python/mapper.py    #chmod +x /data/etlcj/python/reducer.py    2)上传测试文件到集群    #vi /data/etlcj/python/wcin.txt   加入:

foo foo quux labs foo bar quux abc bar see you by test welcome test abc labs foo me python hadoop ab ac bc bec python上传到集群    #hadoop fs -put /data/etlcj/python/wcin.txt  /apps/etlcj/python/

4、基于hadoop-streaming执行MapReduce任务:

     执行语句:

#hadoop jar /usr/hdp/2.5.3.0-37/hadoop-mapreduce/hadoop-streaming-2.7.3.2.5.3.0-37.jar -files '/data/etlcj/python/mapper.py,/data/etlcj/python/reducer.py' -input /apps/etlcj/python/wcin.txt -output /apps/etlcj/python/out/ -mapper ./mapper.py -reducer ./reducer.py 执行过程中提示: Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 126 at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:322) at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:535) at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130) at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:61) at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34) at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:453) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:343) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:168) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1724) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:162) 怀疑是py脚本代码问题或版本环境不匹配问题,对python语法不熟悉,暂无法深入,但python提交到hadoop集群的方法可以。  5、hadoop-streaming参数参考:   Usage:hadoop jar $Haoop_Home$/hadoop-streaming-*.jar     -input <输入目录> \ # 可以指定多个输入路径,例如:-input '/user/foo/dir1' -input '/user/foo/dir2'    -inputformat <输入格式 JavaClassName>     -output <输出目录>     -outputformat <输出格式 JavaClassName>     -mapper <mapper executable or JavaClassName>     -reducer <reducer executable or JavaClassName>     -combiner <combiner executable or JavaClassName>     -partitioner <JavaClassName> \    -cmdenv <name=value> \ # 可以传递环境变量,可以当作参数传入到任务中,可以配置多个    -file <依赖的文件> \ # 配置文件,字典等依赖    -D <name=value> \ # 作业的属性配置

转载请注明原文地址: https://www.6miu.com/read-48731.html

最新回复(0)