matlab pca解释

xiaoxiao2021-02-28  88

[coeff,score,latent] = pca(x); % x为原始数据,行数为样本数,列数为特征数

x_bar = x - repmat(mean(x), size(x,1), 1); % 均值化

[u,s,d] = svd(cov(x)); % u === coeff, diag(s) === latent

xRot = x_bar * u; % xRot ===  score

PCA降维:

[coeff,score,latent] = pca(x);

x_pca = score(:, 1:20); % 降维后的数据,剩下20维

x_pca = x_bar * u(:, 1:20);

转载请注明原文地址: https://www.6miu.com/read-48639.html

最新回复(0)