BZOJ 3670 动物园

xiaoxiao2021-02-28  64

题目描述

近日,园长发现动物园中好吃懒做的动物越来越多了。例如企鹅,只会卖萌向游客要吃的。为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习算法。

某天,园长给动物们讲解KMP算法。

园长:“对于一个字符串S,它的长度为L。我们可以在O(L)的时间内,求出一个名为next的数组。有谁预习了next数组的含义吗?”

熊猫:“对于字符串S的前i个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记作next[i]。”

园长:“非常好!那你能举个例子吗?”

熊猫:“例S为abcababc,则next[5]=2。因为S的前5个字符为abcab,ab既是它的后缀又是它的前缀,并且找不到一个更长的字符串满足这个性质。同理,还可得出next[1] = next[2] = next[3] = 0,next[4] = next[6] = 1,next[7] = 2,next[8] = 3。”

园长表扬了认真预习的熊猫同学。随后,他详细讲解了如何在O(L)的时间内求出next数组。

下课前,园长提出了一个问题:“KMP算法只能求出next数组。我现在希望求出一个更强大num数组一一对于字符串S的前i个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作num[i]。例如S为aaaaa,则num[4] = 2。这是因为S的前4个字符为aaaa,其中a和aa都满足性质‘既是后缀又是前缀’,同时保证这个后缀与这个前缀不重叠。而aaa虽然满足性质‘既是后缀又是前缀’,但遗憾的是这个后缀与这个前缀重叠了,所以不能计算在内。同理,num[1] = 0,num[2] = num[3] = 1,num[5] = 2。”

最后,园长给出了奖励条件,第一个做对的同学奖励巧克力一盒。听了这句话,睡了一节课的企鹅立刻就醒过来了!但企鹅并不会做这道题,于是向参观动物园的你寻求帮助。你能否帮助企鹅写一个程序求出num数组呢?

特别地,为了避免大量的输出,你不需要输出num[i]分别是多少,你只需要输出所有num[i]的乘积,对1,000,000,007取模的结果即可。

输入输出格式

输入格式:

第1行仅包含一个正整数n ,表示测试数据的组数。随后n行,每行描述一组测试数据。每组测试数据仅含有一个字符串S,S的定义详见题目描述。数据保证S 中仅含小写字母。输入文件中不会包含多余的空行,行末不会存在多余的空格。

输出格式:

包含 n 行,每行描述一组测试数据的答案,答案的顺序应与输入数据的顺序保持一致。对于每组测试数据,仅需要输出一个整数,表示这组测试数据的答案对 1,000,000,007 取模的结果。输出文件中不应包含多余的空行。

输入输出样例

输入样例#1: 3 aaaaa ab abcababc 输出样例#1: 36 1 32

说明

测试点编号 约定

1 N ≤ 5, L ≤ 50

2 N ≤ 5, L ≤ 200

3 N ≤ 5, L ≤ 200

4 N ≤ 5, L ≤ 10,000

5 N ≤ 5, L ≤ 10,000

6 N ≤ 5, L ≤ 100,000

7 N ≤ 5, L ≤ 200,000

8 N ≤ 5, L ≤ 500,000

9 N ≤ 5, L ≤ 1,000,000

10 N ≤ 5, L ≤ 1,000,000

【题目大意】给定一个字符串s,定义num[i]为s[1..i]=s[j..k]且1<=i<j<=k的字符串个数。

【题解】我们知道,kmp中的next数组可以表示s[1..i]=s[k-i+1],且使得i最大化。那么num1[i]=num1[next[i]]+1

               但是num1[i]不是最终答案。。。因为不能保证字符串无重叠

我们要找到1~i中点左边的最右边的一个满足条件的点,然后加上1即为num[i]的答案

#include <bits/stdc++.h> using namespace std; #define p 1000000007 #define maxn 1000005 int main() { int T; scanf("%d",&T); while (T--) { long long ans=0; char s[maxn]; scanf("%s",s+1); int next[maxn],num[maxn]; num[1]=1; int n=strlen(s+1); int j=0; ans=1; for (int i=2;i<=n;i++) { while (s[j+1]!=s[i] && j) j=next[j]; if (s[j+1]==s[i]) j++; next[i]=j; num[i]=(num[next[i]]+1); } j=0; for (int i=2;i<=n;i++) { while (s[j+1]!=s[i] && j) j=next[j]; if (s[j+1]==s[i]) j++; while ((j<<1)>i ) j=next[j]; ans=ans*(num[j]+1)%p; } cout<<ans<<endl; } return 0; }

转载请注明原文地址: https://www.6miu.com/read-47289.html

最新回复(0)