POJ1305 勾股数组

xiaoxiao2021-02-28  118

Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level.  This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of a^n + b^n = c^n for n > 2.  Given a positive integer N, you are to write a program that computes two quantities regarding the solution of x^2 + y^2 = z^2, where x, y, and z are constrained to be positive integers less than or equal to N. You are to compute the number of triples (x,y,z) such that x < y < z, and they are relatively prime, i.e., have no common divisor larger than 1. You are also to compute the number of values 0 < p <= N such that p is not part of any triple (not just relatively prime triples).  Input The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to 1,000,000. Input is terminated by end-of-file Output For each integer N in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is <=N). The second number is the number of positive integers <=N that are not part of any triple whose components are all <=N. There should be one output line for each input line. Sample Input 10 25 100 Sample Output 1 4 4 9 16 27

题意:

1.找出勾股数a,b,c的个数,其中gcd(a,b,c)=1,a,b,c不超过n;  2. 和不能构成勾股数的数字。

解题:

设 a*a +b*b = c*c,并且gcd(a,b,c)=1; 把a,b奇偶讨论,可以得到a,b只能一奇一偶,把偶数的b 移到等式另外一边 可以得到 a*a=c*c-b*b ;即a*a = (c+b)(c-b); 假设d是c+b和c-b的公因数。则d也整除c+b+c-b=2c 和 c+b-(c-b)=2b (提取公因数有d),但是b,c没有公因数,所以 d只能为1或者2 但是d也整除a*a = (c+b)(c-b);又a是奇数,所以d为1; 又 (c+b)(c-b)是完全平方数,所以(c+b) 和 (c-b)也是完全平方数 则 可以设c+b = s*s c-b=t*t; 所以可得  a = s*t  b = (s*s-t*t)/2;  c = (s*s+t*t)/2; 上面得到的就是 勾股数组定理 #include<stdio.h> #include<algorithm> #include<string.h> using namespace std; // a = s*t // b = (s*s-t*t)/2; // c = (s*s+t*t)/2; int gcd(int a,int b){ return b==0?a:gcd(b,a%b); } int vis[1000005]; int main(){ int n; while(scanf("%d",&n)!=EOF){ int cnt=0; int ans=0; memset(vis,0,sizeof(vis)); for(int s=1;s*s<2*n;s+=2){ for(int t=1;s*t<=n&&s*s+t*t<=2*n;t+=2){ if(gcd(s,t)!=1) continue; int a = s*t; int b = (s*s-t*t)/2; int c = (s*s+t*t)/2; if((s*s-t*t)%2) continue; if((s*s+t*t)%2) continue; if(a<=0||b<=0||c<=0) continue; if(a>n||b>n||c>n) continue; for(int i=1;i<=n/max(max(a,b),c);i++) vis[a*i]=vis[b*i]=vis[c*i]=1; cnt++; } } for(int i=1;i<=n;i++){ if(!vis[i]) ans++; } printf("%d %d\n",cnt,ans); } }

另外补充一个勾股数组定理:

圆x*x+y*y=1上的坐标的有理数点,可以由公式((1-m*m)/(1+m*m),(2*m)/(1+m*m) )

转载请注明原文地址: https://www.6miu.com/read-44337.html

最新回复(0)