Udacity深度学习-深度神经网络-assignment3

xiaoxiao2021-02-28  97

六层深度神经网络+SGD+L2正则项+dropout,TensorFlow实现 #NN with SGD, L2 batch_size = 128 layer_cnt = 6#层数 graph = tf.Graph() with graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. weights = [] biases = [] hidden_cur_cnt = 784 for i in range(layer_cnt - 2): if hidden_cur_cnt > 2: hidden_next_cnt = int(hidden_cur_cnt / 2) else: hidden_next_cnt = 2 hidden_stddev = np.sqrt(2.0 / hidden_cur_cnt) weights.append(tf.Variable(tf.truncated_normal([hidden_cur_cnt, hidden_next_cnt], stddev=hidden_stddev))) biases.append(tf.Variable(tf.zeros([hidden_next_cnt]))) hidden_cur_cnt = hidden_next_cnt weights.append(tf.Variable(tf.truncated_normal([hidden_cur_cnt, num_labels], stddev=hidden_stddev))) biases.append(tf.Variable(tf.zeros([num_labels]))) # Training computation. hidden_drop = tf_train_dataset keep_prob = 0.5 for i in range(layer_cnt - 2): y1 = tf.matmul(hidden_drop, weights[i]) + biases[i] hidden_drop = tf.nn.relu(y1) keep_prob += 0.5 * i / (layer_cnt + 1) hidden_drop = tf.nn.dropout(hidden_drop, keep_prob) z3 = tf.matmul(hidden_drop, weights[-1]) + biases[-1] l2_loss = tf.Variable(0.0) for wi in weights: l2_loss += tf.nn.l2_loss(wi) loss = tf.reduce_mean( tf.add( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=z3),0.001 * l2_loss) ) # Optimizer. global_step = tf.Variable(0) # count the number of steps taken. learning_rate = tf.train.exponential_decay(0.5, global_step, 1000, 0.9) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(z3) def predict(dataset): hidden_drop = dataset for i in range(layer_cnt - 2): y1 = tf.matmul(hidden_drop, weights[i]) + biases[i] hidden_drop = tf.nn.relu(y1) result = tf.matmul(hidden_drop, weights[-1]) + biases[-1] return result valid_prediction = tf.nn.softmax(predict(tf_valid_dataset)) test_prediction = tf.nn.softmax(predict(tf_test_dataset))

运行代码:

num_steps = 20001 with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print("Initialized") for step in range(num_steps): # Pick an offset within the training data, which has been randomized. # Note: we could use better randomization across epochs. offset = (step * batch_size) % (train_labels.shape[0] - batch_size) # Generate a minibatch. batch_data = train_dataset[offset:(offset + batch_size), :] batch_labels = train_labels[offset:(offset + batch_size), :] # Prepare a dictionary telling the session where to feed the minibatch. # The key of the dictionary is the placeholder node of the graph to be fed, # and the value is the numpy array to feed to it. feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 500 == 0): print("Minibatch loss at step %d: %f" % (step, l)) print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("Validation accuracy: %.1f%%" % accuracy( valid_prediction.eval(), valid_labels)) print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
转载请注明原文地址: https://www.6miu.com/read-43828.html

最新回复(0)