redis-benchmark压力测试

xiaoxiao2021-02-28  100

redis-benchmark压力测试

redis-benchmark是redis官方提供的压测工具,安装好redis后,默认安装。使用简便。

语法:

Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>]

模拟20个客户端,100000次请求

redis-benchmark -h 192.168.1.1 -p 6379 -n 100000 -c 20

模拟1000000次请求,生成100000000个set结构

redis-benchmark -t set -n 1000000 -r 100000000

模拟ping,set,get 各100000次,结果输出到csv文件

redis-benchmark -t ping,set,get -n 100000 --csv

模拟100000次键foo的存储性能

redis-benchmark -n 100000 -q script load "redis.call('set','foo','bar')"

模拟一下十万次请求: redis-benchmark -n 100000 -q 模拟一下百万级访问近百万key: [root@vm-ArthurGuo-1 ~]# redis-benchmark -n 1000000 -r1000000 -q 模拟一个万级用户的并发:  redis-benchmark -c 10000 -n 1000000 -r 1000000 -q

redis-benchmark --help

Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>]  -h <hostname>      Server hostname (default 127.0.0.1)  --主机ip地址  -p <port>          Server port (default 6379) --端口  -s <socket>        Server socket (overrides host and port) --socket(如果测试在服务器上测可以用socket方式)  -c <clients>       Number of parallel connections (default 50) --客户端连接数  -n <requests>      Total number of requests (default 10000) --总请求数  -d <size>          Data size of SET/GET value in bytes (default 2) --set、get的value大小  -dbnum <db>        SELECT the specified db number (default 0) --选择哪个数据库测试(一般0-15)  -k <boolean>       1=keep alive 0=reconnect (default 1) --是否采用keep alive模式  -r <keyspacelen>   Use random keys for SET/GET/INCR, random values for SADD --随机产生键值时的随机数范围   Using this option the benchmark will expand the string __rand_int__   inside an argument with a 12 digits number in the specified range   from 0 to keyspacelen-1. The substitution changes every time a command   is executed. Default tests use this to hit random keys in the   specified range.  -P <numreq>        Pipeline <numreq> requests. Default 1 (no pipeline). --pipeline的个数(如果使用pipeline会把多个命令封装在一起提高效率)  -q                 Quiet. Just show query/sec values --仅仅查看每秒的查询数  --csv              Output in CSV format --用csv方式输出  -l                 Loop. Run the tests forever --循环次数  -t <tests>         Only run the comma separated list of tests. The test --指定命令                     names are the same as the ones produced as output.  -I                 Idle mode. Just open N idle connections and wait. --仅打开n个空闲链接 Examples:  Run the benchmark with the default configuration against 127.0.0.1:6379:    $ redis-benchmark  Use 20 parallel clients, for a total of 100k requests, against 192.168.1.1:    $ redis-benchmark -h 192.168.1.1 -p 6379 -n 100000 -c 20  --测试set、get、mset、sadd等场景下的性能  Fill 127.0.0.1:6379 with about 1 million keys only using the SET test:    $ redis-benchmark -t set -n 1000000 -r 100000000  --测试set随机数的性能  Benchmark 127.0.0.1:6379 for a few commands producing CSV output:    $ redis-benchmark -t ping,set,get -n 100000 --csv  --使用csv的输出方式测试  Benchmark a specific command line:    $ redis-benchmark -r 10000 -n 10000 eval 'return redis.call("ping")' 0 --测试基本命令的速度  Fill a list with 10000 random elements:    $ redis-benchmark -r 10000 -n 10000 lpush mylist __rand_int__  --测试list入队的速度  On user specified command lines __rand_int__ is replaced with a random integer  with a range of values selected by the -r option. 下面我就测下我的笔记本电脑的redis性能: [root@db1 ~]# redis-benchmark -h 127.0.0.1 -p 6379 -n 100000 -c 20 ====== PING_INLINE ======   100000 requests completed in 1.09 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.86% <= 1 milliseconds 100.00% <= 2 milliseconds 100.00% <= 2 milliseconds 91659.03 requests per second ====== PING_BULK ======   100000 requests completed in 1.07 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.94% <= 1 milliseconds 100.00% <= 1 milliseconds 93545.37 requests per second ====== SET ======   100000 requests completed in 1.03 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.78% <= 1 milliseconds 100.00% <= 1 milliseconds 97087.38 requests per second ====== GET ======   100000 requests completed in 1.10 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.81% <= 1 milliseconds 100.00% <= 1 milliseconds 90909.09 requests per second ====== INCR ======   100000 requests completed in 1.09 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.86% <= 1 milliseconds 100.00% <= 1 milliseconds 91911.76 requests per second ====== LPUSH ======   100000 requests completed in 1.07 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.85% <= 1 milliseconds 100.00% <= 1 milliseconds 93808.63 requests per second ====== LPOP ======   100000 requests completed in 1.01 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.89% <= 1 milliseconds 100.00% <= 1 milliseconds 98522.17 requests per second ====== SADD ======   100000 requests completed in 1.04 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.76% <= 1 milliseconds 100.00% <= 1 milliseconds 96153.85 requests per second ====== SPOP ======   100000 requests completed in 1.11 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.92% <= 1 milliseconds 100.00% <= 1 milliseconds 90171.33 requests per second ====== LPUSH (needed to benchmark LRANGE) ======   100000 requests completed in 1.09 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.82% <= 1 milliseconds 100.00% <= 1 milliseconds 92081.03 requests per second ====== LRANGE_100 (first 100 elements) ======   100000 requests completed in 2.53 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.91% <= 1 milliseconds 100.00% <= 2 milliseconds 100.00% <= 2 milliseconds 39603.96 requests per second ====== LRANGE_300 (first 300 elements) ======   100000 requests completed in 5.17 seconds   20 parallel clients   3 bytes payload   keep alive: 1 91.01% <= 1 milliseconds 99.94% <= 2 milliseconds 100.00% <= 2 milliseconds 19346.10 requests per second ====== LRANGE_500 (first 450 elements) ======   100000 requests completed in 7.41 seconds   20 parallel clients   3 bytes payload   keep alive: 1 61.54% <= 1 milliseconds 98.36% <= 2 milliseconds 99.96% <= 3 milliseconds 100.00% <= 4 milliseconds 100.00% <= 4 milliseconds 13498.92 requests per second ====== LRANGE_600 (first 600 elements) ======   100000 requests completed in 9.49 seconds   20 parallel clients   3 bytes payload   keep alive: 1 41.24% <= 1 milliseconds 91.89% <= 2 milliseconds 99.78% <= 3 milliseconds 100.00% <= 4 milliseconds 100.00% <= 4 milliseconds 10541.85 requests per second ====== MSET (10 keys) ======   100000 requests completed in 1.68 seconds   20 parallel clients   3 bytes payload   keep alive: 1 99.28% <= 1 milliseconds 100.00% <= 1 milliseconds 59382.42 requests per second 从以上可以看出,20个客户端,每种场景均有100000次请求:ping、set、get、lpush、lpop、spop等都达到90000多rps,但lrange前100、300、500等就比较慢了,才10000多rps。 再测下set的速度: [root@db1 ~]# redis-benchmark -t set -n 1000000 -r 100000000 ====== SET ======   1000000 requests completed in 10.56 seconds   50 parallel clients   3 bytes payload   keep alive: 1 98.65% <= 1 milliseconds 99.90% <= 2 milliseconds 99.99% <= 3 milliseconds 100.00% <= 3 milliseconds 94741.83 requests per second 每秒94741次,非常快 再来测试下list的入队速度: [root@db1 ~]# redis-benchmark -r 100000 -n 100000 lpush mylist __rand_int__ ====== lpush mylist __rand_int__ ======   100000 requests completed in 0.97 seconds   50 parallel clients   3 bytes payload   keep alive: 1 98.83% <= 1 milliseconds 100.00% <= 1 milliseconds 102774.92 requests per second 超过了10w次。

转载请注明原文地址: https://www.6miu.com/read-43449.html

最新回复(0)