ACM模版
描述
题解
默比乌斯反演 + 杜教筛 + 分块 + 欧拉函数!!!这个套路的题
51Nod
上真多……
HOWARLI’s blog 可供详细参考!!!这几道套路题大佬差不多都写了,我就是看看大佬的题解拓展拓展眼界~~~
代码
#include <cstdio>
#include <cstdlib>
using namespace std;
typedef long long ll;
const int MAXN =
4e6;
const int MOD =
1e9 +
7;
const int MAXM =
3e5;
const int INV_2 =
5e8 +
4;
const int INV_6 =
166666668;
int n, m;
bool prz[MAXN +
10];
int pri[MAXN >>
1];
int phi[MAXN +
10];
int hx[MAXM][
2];
int HX(
int q)
{
int tmp = q % MAXM;
while (hx[tmp][
0] && hx[tmp][
0] != q)
{
tmp = (tmp +
1) % MAXM;
}
return tmp;
}
ll SM(ll s, ll t)
{
return (s + t) * (t - s +
1) % MOD * INV_2 % MOD;
}
ll Gphi(
int q)
{
if (q <= MAXN)
{
return phi[q];
}
int t = HX(q);
if (hx[t][
0])
{
return hx[t][
1];
}
hx[t][
0] = q;
ll ans =
0;
for (
int i =
2, nx; i <= q; i = nx +
1)
{
nx = q / (q / i);
ans = (ans + SM(i, nx) * Gphi(q / i) % MOD) % MOD;
}
q %= MOD;
return hx[t][
1] = (
int)((ll)q * (q +
1) % MOD * (
2 * q +
1) % MOD * INV_6 % MOD - ans);
}
ll Gans(
int n)
{
int ans = n % MOD;
for (
int i =
2, nx; i <= n; i = nx +
1)
{
nx = n / (n / i);
ans = (ans + (ll)(n / i) * (Gphi(nx) - Gphi(i -
1)) % MOD * INV_2 % MOD) % MOD;
}
return ans;
}
void init()
{
phi[
1] =
1;
for (
int i =
2; i <= MAXN; i++)
{
if (!prz[i])
{
pri[++pri[
0]] = i;
phi[i] = i -
1;
}
for (
int j =
1; j <= pri[
0]; j++)
{
int t = pri[j] * i;
if (t > MAXN)
{
break;
}
prz[t] =
1;
phi[t] = phi[i] * pri[j];
if (i % pri[j] ==
0)
{
break;
}
phi[t] = phi[i] * (pri[j] -
1);
}
}
for (
int i =
2; i <= MAXN; i++)
{
phi[i] = ((ll)phi[i] * ((ll)i) % MOD + phi[i -
1]) % MOD;
}
}
int main()
{
init();
scanf(
"%d%d", &m, &n);
printf(
"%lld\n", (Gans(n) - Gans(m -
1) + MOD) % MOD);
return 0;
}